П. М. СМИРНОВ, Э. Л. МУРАВИН

АГРОХИМИЯ

Допущено Главным управлением высшего и среднего сельскохозяйственного образования Министерства сельского хозяйства СССР в качестве учебника для студентов высших сельскохозяйственных учебных заведений по специальности «Экономика и организация сельского хозяйства»

631.8 C50 УДК 63:54 (075.8)

От издательства

В учебнике введение, главы 1-6 написаны П. М. Смирновым и Э. А. Муравиным, глава 7 — В. П. Фефеловым.

Смирнов П. М. и Муравин Э. А.

Агрохимия. М., «Колос», 1977.

240 с. с пл. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

Учебник для сельскохозяйственных вузов. Содержит теоретические основы агрохимии и системы удобрения в различных севооборотах; попросы организации и деятельности агрохимической службы в стране. Слециальным разделом дана экономическая оценка применения органических, минеральных удобрений и химической мелиорации почв.

 $C_{035(01)-77}^{40306-106}$ 187-77

631.8

ЗАДАЧИ И МЕТОДЫ АГРОХИМИИ

Агрохимия изучает круговорот питательных веществ в земледелии, взаимоотношения между растением, почвой и удобрениями и способы регулирования питания сельскохозяйственных культур для повышения их урожайности и улучшения качества урожая.

Основной способ вмешательства человека в этот круговорот —

применение удобрений.

Внесение минеральных удобрений позволяет вводить в круговорот веществ в земледелии новые количества элементов питания растений, а применение навоза и других отходов растениеводства и животноводства — повторно использовать часть питательных веществ, уже входивших в состав предыдущих урожаев. В результате становится возможным восполнять вынос питательных веществ урожаями и непроизводительные потери их из почвы (вследствие ветровой и водной эрозии, выщелачивания, улетучивания в атмосферу и т. д.) и таким образом не только поддерживать, но и повышать плодородие почв.

Главной целью применения удобрений является регулирование круговорота питательных веществ в земледелии и улучшение питания растений.

«В конечном счете все задачи земледелия, — писал К. А. Тимирязев, — сводятся к возможно строгому осуществлению питания растений». Изучение питания растений всегда было одной из важнейших задач агрохимии. Она исследует также обмен веществ в растениях в связи с условиями питания, ибо характер его определяет не только величину, но и качество урожая. Исследование этих вопросов связывает агрохимию с физиологией и биохимией растений. Но в задачу агрохимии входит, кроме того, изучение и разработка наиболее эффективных методов регулирования питания и обмена веществ в растениях внесением удобрений для повышения урожая и улучшения его качества.

Таким образом, первым объектом исследования в агрохимии является растение.

При изучении питания растений и разработке способов его регулирования с помощью удобрений должны учитываться также особенности биологии и агротехники отдельных культур. Здесь отмечается связь агрохимии с растениеводством.

Рис. 1. Схема взапмосвязи между растением, почвой и удобрением.

Вторым объектом исследования в агрохимии является почва. Изучение содержания и динамики питательных веществ в почве, их доступности растениям, разнообразных процессов превращения удобрений в почве, их действия на ее свойства — важный раздел агрохимии; по этой линии она связана с почвоведением и почвенной микробиологией.

И, наконец, третий объект агрохимии — сами удобрения; изучая их состав, свойства и эффективность, агрохимия связана не только с сельскохозяйственным производством, но и с химической промышленностью, ибо оценка новых видов и форм удобрений, выпускаемых

ею, определение заказа на их производство входят в задачу агрохимии. Три основных объекта, изучаемых в агрохимии, — растения, почва и удобрения — находятся в диалектической взаимосвязи и взаимодействии друг с другом.

«Изучение взаимоотношений между растением, почвой и удобрением, — писал Д. Н. Прянишников, — всегда являлось главной задачей агрохимиков», причем он подчеркивал, что только агрохимия в целях регулирования питания растений внесением соответствующих удобрений для повышения плодородия почвы и урожайности сельскохозяйственных культур занимается синтезом знаний по трем названным взаимодействующим факторам. В этом состоит ее отличие от других смежных наук. Диалектическую систему связей, которые изучает агрохимия, Д. Н. Прянишников изобразил в виде треугольника, три вершины которого обозначают растенис, почву и удобрение, а двойные стрелки — взаимное влияние каждого из этих объектов на остальные (рис. 1).

Изучение питания растений и взаимодействия между растением, почвой и удобрением составляет теоретическую основу агрохимии. Знание ее позволяет творчески решать многие практические вопросы применения удобрений. Это вопросы о наиболее эффективных формах, дозах и соотношениях удобрений, рациональных сроках и способах их внесения под различные культуры на разных почвах, о правильном сочетании внесения удобрений с системой обработки почвы, севооборотом, орошением и другими агротехническими приемами. Агрохимия тесно связапа с общим земледелием и мелиорацией, а также с экономикой и организацией сельскохозяйственного производства, ибо любые приемы использования удобрений обусловлены агротехникой и должны оцениваться с точки арения их экономической эффективности, а все мероприятия по применению удобрений должны быть увязаны в общем организационно-хозяйственном плане хозяйства.

При изучении теоретических и практических вопросов в агрохимии применяют разнообразные методы исследования: 1) лабораторные (химические и физико-химические) анализы растения, почвы и удобрения; 2) вегетационные опыты с растениями (в вегетационных домиках и теплицах); 3) полевые опыты с удобрениями в различных почвенно-климатических аонах и 4) производственные опыты на больших площадях в колхозах и совхозах с оценкой экономической эффективности полученных результатов,

Приложение агрохимии в практике сельского хозяйства осуществляется главным образом по линии эффективного использования

разнообразных местных и промышленных удобрений.

Агрохимия — научная основа химизации земледелия, которая наряду с комплексной механизацией и мелиорацией земель определяет научно-технический прогресс в сельском хозяйстве, является одним из основных путей его интенсификации, повышения его продуктивности.

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ АГРОХИМИИ

اريل

Развитие агрохимии неразрывно связано с развитием наших знаний о питании растений.

Навоз, золу, известь и другие местные удобрения земледельцы применяли задолго до разработки современной теории питания растений. Но тогда положительное действие удобрений не могло быть теоретически объяснено, что закрывало путь к широкому их применению.

Первые научные данные были получены относительно воздушного питания растений. В конце XVIII в. Пристли, Ингенгуза и Сенобье экспериментально показали, что зеленые листья растепий на свету усваивают из воздуха углекислый газ (СО₂), выделяя из него кислород и оставляя в себе углерод, который используется для построения растительных тканей.

Так был открыт фотосинтез у растений.

В области же корневого питания растений и после обпаружения фотосинтеза еще длительное время господствовали неверные представления.

Особенно яркое выражение они нашли в «гумусовой теории» питания растений, которая была впервые высказана в 1761 г. шведским ученым Валериусом. Но больше всего способствовал широкому распространению «гумусовой теории» в первой четверти XIX в. пемецкий ученый Тэер. Он считал, что гумус почвы — единственный источник питания растений, минеральные же вещества лишь способствуют переводу его в удобоусвояемую форму.

Некоторые ученые уже в то время отрицали гумусовую теорию питапия Тэера. К ним относился французский ученый Буссенго, который развил азотную теорию питания и удобрений. Он указал на первостепенное значение азота в земледелии и точными опытами в полевых условиях показал, что клевер в сепообороте улучшает азотцый баланс и значительно повышает урожайность других сельскохозяйственных культур.

Тем не менее учение Тэера господствовало до 40-х годов XIX в.

Коренной поворот во взглядах на питание растений произошел в 1840 г., когда немецкий ученый-химик Либих в книге «Химия в приложении к земледелию и физиологии» в популярной форме дал уничтожающую критику «гумусовой теории» и сформулировал теорию минерального питания растений. Либих объяснил причины истощения почвы при однообразной культуре и выдвинул теорию удобрения, основанную на возврате в почву взятых из нее элементов питания. Он считал необходимым возвращать те вещества, которые из почвы извлекаются особенно сильно, то есть те, которые находятся в первом минимуме. Это правило получило название «закон минимума».

Либих считал, что из всех зольных веществ в первую очередь следует возвращать в почву фосфор, так как его больше всего выносится из почвы зерновыми культурами. Значение азота в удобрении Либих недооценивал. Он ошибочно полагал, что аммиака, цоступающего в почву из воздуха с осадками, вполне достаточно для растений. Поэтому предложенное им удобрение, в состав которого не был включен азот, оказалось неэффективным. Неверным было и мнение Либиха о возможности замены навоза его золой. Вскоре (1843 г.) Лоозом — основателем Ротамстедтской опытной станции (Англия) — на основании полевых опытов были опровергнуты эти ошибочные взгляды Либиха. Было показано, что для повышения урожаев в составе удобрений наряду с зольными элементами должен обязательно быть и азот. В середине XIX в. в Европе и Америке стали применять для удобрения чилийскую (натриевую) селитру, которая давала очень высокий эффект. Это подтвердило правоту взглядов Буссенго, впервые указавшего на первостепенное значение азота в питании растений. Нельзя придавать абсолютное значение требованию Либиха о полиом возврате в почву всех питательных веществ; теперь установлено, что полный возврат всех питательных веществ не обязателен. Однако идея о необходимости возвращения в почву взятых растениями элементов питания, безусловно, правильная.

К. А. Тимирязев писал: «Учение о необходимости возврата представляет, как бы ни пытались ограничить его значение, одно из величайщих приобретений науки».

Либихом впервые была четко высказана идея о сознательном регулировании круговорота веществ в земледелии, ибо нарушение его приводит к падению почвенного плодородия.

К. Маркс дал высокую оценку этому положению Либиха: «Выяснение отрицательной стороны современного земледелия, с точки зрения естествознания, представляет собой одну из бессмертных заслуг Либиха» *.

Несмотря на ошибочность некоторых положений Либиха, его работы пробудили интерес к проблеме питания растений и применения удобрений, стимулировали развитие исследований в этой

^{*} Маркс К. Капитал, т. 1, 1963, стр. 515.

области. Во многих странах были созданы агрохимические опытные станции, которые сыграли важную роль в дальнейшем развитии агрохимии и использовании удобрений в сельскохозяйственной практике.

Важное значение для развития учения о питании растений имели опыты с выращиванием растений в искусственных, бесплодных средах — воде или песке. При добавлении в них необходимых питательных веществ ряду ученых (Кноп, Сакс и др.) в 50-е годы XIX в. удалось добиться нормального роста растений и точно установить, какие элементы, в каких количествах и соотношениях необходимы для питания растений. Большую роль имели также исследования Гельригеля по изучению особенностей азотного питания бобовых растений. Эти исследования показали, что бобовые способны с помощью развивающихся на их корнях клубеньковых бактерий усваивать азот атмосферы и обогащать им почву.

Параллельно с развитием теории питания растений в сельскохозяйственную практику входили и минеральные удобрения. Уже к середине XIX в. в странах Западной Европы применяли суперфосфат и чилийскую селитру, а позднее (1865 г.) стали использовать калийные удобрения, производимые из природных залежей калийных солей в Стассфурте.

В развитии агрохимии выдающаяся роль принадлежит русским ученым. Начало разработки вопросов питания растений и применения удобрений в нашей стране относится к концу XVIII— началу XIX в. Передовые представители русской агрономической науки того времени И. М. Комов и А. Т. Болотов уделяли большое внимание применению навоза, компостов, золы, извести и других местных удобрений для восстановления плодородия почвы, указывали на необходимость развития опытного дела с удобрениями.

А. Т. Болотов и А. П. Пошман в начале XIX в., задолго до Либиха, указывали на значение для питания растений минеральных солей, образующихся в почве при разложении навоза.

С 60—70 гг. XIX в. в нашей стране начинаются систематические научные исследования в области питания растений и применения удобрений. Особенно большое значение имели работы А. Н. Энгельгардта, Д. И. Менделеева, П. А. Костычева, К. А. Тимирязева. Проф. А. Н. Энгельгардт — автор широко известных «Писем из деревни» и «Химических основ земледелия» — был горячим пропагандистом применения минеральных удобрений, навоза, извести, сидератов. Им впервые в России была доказана высокая эффективность фосфоритной муки на подзолистых почвах и разработаны основы ее использования.

Для развития агрохимии много сделал Д. И. Менделеев. Под его руководством были проведены первые полевые опыты с минеральными удобрениями в различных районах страны. Д. И. Менделеев считал их мощным средством повышения урожаев.

В создании научных основ агрохимии большое значение имели классические исследования К. А. Тимирязева по фотосинтезу и ми-

Академик Д. Н. Прянишников (1856—1948).

неральному питанию растений и внедрение им методики вегетационных опытов.

Дальнейшее развитие агрохимии связано с именем Д. Н. Прянишникова и его многочисленных учеников. Научная деятельность Д. Н. Прянишникова приобрела особенно широкий размах после Великой Октябрьской социалистической революции. Им опубликовано более 400 работ, многие из которых получили мировую известность. Особенно большой вклад сделан его классическими исследованиями по азотному питанию растений и применению азотных удобрений.

Благодаря плодотворной научной деятельности Д. Н. Пряниш-

ңик<u>ова,</u> созданной им с<u>оветской школы агрохимиков развитие агро-</u> химии в нашей стране осуществлялось на широкой физиологической и бибхимической основе в тесной связи с практическими задачами химпзации сельского хозяйства. Трудами Д. Н. Прянишникова, П. С. Коссовича, К. К. Гедройца, А. Н. Лебедянцева, Д. А. Сабинипа и многих других советских ученых был утвержден приоритет отечественной науки в решении многих проблем агрохимии. В 1918 г. был организован специальный научный институт по удобрениям (НИУ), а затем (1931 г.) Всесоюзный научно-исследовательский институт удобрений, агротехники и агропочвоведения (ВИУАА). Были созданы агрохимические отделы в зональных и отраслевых научноисследовательских институтах и на опытных станциях, кафедры агрохимии в сельскохозяйственных вузах. С 20—30-х годов проводятся географические опыты с различными культурами в разных районах страны по изучению эффективности удобрений, доз и способов их внесения. Этими опытами доказано высокое действие удобрений во многих районах страны и созданы научные основы для развития туковой промышленности, щирокого применения удобрений в сельском хозяйстве.

Агрохимические исследования в нашей стране приобрели особенно широкий размах в последние 10 лет. Созданы новые научно-исследовательские агрохимические институты — Центральный институт агрохимического обслуживания сельского хозяйства (ЦИ-НАО), Институт агрохимии и почвоведения АН СССР, Институт химизации сельского хозяйства сибирского отделения ВАСХНИЛ. В 1964 г. создана Государственная агрохимическая служба, организовано более 200 зональных агрохимических лабораторий (ЗАЛ), которые под методическим руководством ЦИНАО проводят полевые опыты с удобрениями, массовые анализы почв, удобрений и кормов,

составляют агрохимические картограммы и дают практические рекомендации хозяйствам по эффективному использованию удобрений.

Широкие агрохимические исследования служат научной основой для развития химизации земледелия, правильного и эффективного применения все возрастающих количеств органических и минеральных удобрений.

ЗНАЧЕНИЕ УДОБРЕНИЙ И ПРИМЕНЕНИЕ ИХ В СЕЛЬСКОМ ХОЗЯЙСТВЕ СССР

У Химизация земледелия — важнейшее средство повышения урожайности сельскохозяйственных культур, наиболее экономически эффективный путь интенсификации сельского хозяйства.

На большое значение минеральных удобрений для повышения плодородия почв и продуктивности земледелия указывали классики марксизма-ленинизма. К. Маркс писал в «Капитале», что плодородие почвы находится в прямой зависимости от уровня развития химизации и механизации. В. И. Ленин, рассматривая новые данные о законах развития капитализма в земледелии, указывал: «...данные о расходах на удобрение и о стоимости орудий и машин служат самым точным статистическим выражением степени интенсификации земледелия» *.

Производство и применение минеральных удобрений во всем мире непрерывно возрастает. Рост мирового потребления минеральных удобрений (в млн. т питательных веществ) характеризуется следующими данными:

Применение все возрастающих количеств минеральных удобрений обеспечило значительный рост урожайности всех культур. По оценке западноевропейских ученых не менее 50% всего прироста урожая сельскохозяйственных культур падает на минеральные удобрения. По данным американских ученых, каждый из факторов, определяющих повышение урожайности, имеет следующий удельный вес (в %): удобрения — 41, гербициды — 13—20, благоприятная погода — 15, гибридные семена — 8, ирригация — 5, прочие факторы — 11—18.

В Советском Союзе производство и применение минеральных удобрений растет исключительно быстрыми темпами, оказывая значительное влияние на повышение урожайности сельскохозяйственных культур.

В дореволюционной России не было развитой химической промышленности, минеральные удобрения производились в незначительном количестве (в 1913 г. только 89 тыс. т). За годы Советской власти были открыты колоссальные залежи сырья для производства удобрений (апатитов, фосфоритов, калийных солей), была создана

^{*} Ленин В. И. Полное собрание сочинений, т. 27, с. 159-160.

мощная химическая промыпленность и организован выпуск азотных, фосфорных и калийных удобрений.

В 1940 г. производство и применение минеральных удобрений составило 3,2 млн. т, к 1955 г. производство удобрений увеличилось в 3 раза и затем каждое десятилетие (1955—1965 гг. и 1965—1975 гг.) утраивалось. В 1975 г. производилось минеральных удобрений 90 млн. т и применялось в сельском хозяйстве 72 млн. т. По темпам роста, а также общему объему производства и применения минеральных удобрений СССР занимает первое место в мире.

Развитию химизации сельского хозяйства, расширению производства и применения удобрений в нашей стране придается исключительно большое значение. Решениями XXV съезда КПСС намечено к 1980 г. довести производство минеральных удобрений до 143 млн. т, а поставку их сельскому хозяйству до 120 млн. т (в том числе 5 млн. т химических кормовых добавок). Среднее содержание питательных веществ в удобрениях должно быть не ниже 40%. Обеспеченность удобрениями гектара пашни возрастет с 3,3 ц в 1975 г. до 5 ц в 1980 г. Поставлена задача увеличить выпуск концентрированных и сложных удобрений.

Одновременно будет совершенствоваться система агрохимического обслуживания колхозов и совхозов. Необходимые меры для повышения эффективности использования в сельском хозяйстве минеральных удобрений и химических средств защиты растений определены постановлением ЦК КПСС и Совета Министров СССР (1976 г.) «О мерах по дальнейшему повышению эффективности использования минеральных удобрений, сокращению их потерь при транспортировке, храпении и внесении в почву и совершенствованию агрохимического обслуживания колхозов и совхозов».

→ Постановление предусматривает дальнейшее улучшение качества минеральных удобрений; развитие материальной базы химизации; строительство крупных механизированных складов для хранения удобрений и ядохимикатов; оснащение их погрузочно-разгрузочными механизмами и тукосмесительными установками; создание пунктов химизации в колхозах и совхозах и на основе межхозяйственной кооперации для проведения работ по химизации сельского хозяйства; улучшение работы Государственной агрохимической службы. ∨

➤ С ростом производства минеральных удобрений появляется возможность использования их не только под технические, но п под зерновые и кормовые культуры и значительно повысить их урожайность.

Применение минеральных удобрений под технические культуры (хлопчатник, сахарную свеклу, чай) позволило в короткий срок резко поднять их урожайность (табл. 1).

С ростом применения минеральных удобрений урожайность чайного листа в Грузии достигла 45 ц с 1 га.

На основе большого количества опытов установлено, что средняя прибавка урожайности от 1 ц аммиачной селитры составляет; зерно-

Таблица 1
Применение минеральных удобрений (ц стандартных туков на 1 га)
и урожайность хлопчатника и сахарной свеклы (ц с 1 га)

	Хлопо	Хлопок-сырец		я свекла
Годы	удобрение	атэонйажоду	удобрение	урожайность
1933 1940 1956—1960 1961—1965 1966—1970 1971—1974 1975	0,75 4,9 9,3 9,7 13,7 16,0 16,1	7,4 13,8 20,5 20,6 24,1 27,1	1,52 6,25 8,1 8,9 9,5 13,3	74 129 184 165 228 225

вых 4—5 ц, картофеля 20—30 и сахарной свеклы 40—50 ц на 1 га. От 1 ц суперфосфата урожайность зерна повышается при разбросном внесении на 1,5—2 ц, а при заделке в рядки при посеве — па 5—6 ц на 1 га.

В таблице 2 приведены средние прибавки урожайности на 1 т действующего вещества минеральных удобрений.

Таблица 2 Прибавки урожайности сельскохозяйственных культур от минеральных удобрений

	Прибавка урожайности (т) от 1 т			
Культура	азота (N)	фосфора (Р ₂ О ₅)	калия (К₂О)	
Озимая ишеница и рожь Картофель Лен Сахарная свекла Хлопчатник	12—15 100—120 1,5—2,5 120—140 10—12	7—8 50—60 1,2—2,0 55—60 5—6	3-4 40-50 0,9-1,5 40-50 2	

Эффективность минеральных удобрений зависит от обеспеченности почв подвижными формами питательных веществ, количества осадков, уровня агротехники и других условий. В разных почвенно-климатических зонах она неодинакова.

Особенно сильное действие удобрения оказывают при орошении, а также в Нечерноземной зоне РСФСР, в БССР, Прибалтике и Полесье УССР.

Минеральные удобрения при правильном применении дают высокий экономический эффект. В первый же год окупаемость их достигает 3—5-кратной величины (табл. 3).

Большое значение для получения высоких и устойчивых урожаев имеет известкование кислых почв и применение органических удобрений.

Экономическая эффективность минеральных удобрений (NPK) (Данные ВИУА)

Культура	Количество удобрений (ц на 1 га)	Средпяя при- бавка урожай- ности (ц на 1 га)	Условно чистый доход (руб. на 1 га)
Зерновые	4,5	8,0	33,7
Сахарная свекла	9,5	70,0	81,8
Картофель	5,5	60,0	180,0
Хлопчатинк	11,2	10,0	215,1
Леп-долгунец	6,7	1,5	271,4
Табак	7,5	5,0	599,2
Овощпые	6,9	80,0	455,2

По данным научных учреждений Нечерноземной зоны, навоз в дозе 20-30 т на 1 га дает следующие средние прибавки урожайности (в ц на 1 га): зерновых 6-7, картофеля 60-70, капусты 70-80 и силосных 150-200.

Повышение урожайности зерновых и других культур за последние 10 лет обусловлено в основном ростом использования минеральных и органических удобрений, расширением работ по известкованию кислых почв.

ОДля паиболее эффективного применения удобрений требуется хорошее знание их свойств и способов применения с учетом конкретных почвенных и климатических условий, биологических особенностей и агротехники культур. Высокоэффективное использование удобрений невозможно без широкого применения в производстве достижений науки и опыта передовых хозяйств, без хорошей агрохимической подготовки специалистов и других работников сельского хозяйства.

Широкая химизация сельского хозяйства, рациональное применение удобрений в сочетании с другими приемами интенсификации и повышением всей культуры сельскохозяйственного производства обеспечат дальнейший рост продуктивности земледелия и животноводства в нашей стране.

ОСНОВЫ ПИТАНИЯ РАСТЕНИЙ

ХИМИЧЕСКИЙ СОСТАВ РАСТЕНИЙ

В состав растения входит вода и так называемое сухое вещество, представленное органическими и минеральными соединениями. Соотношение между количеством воды и сухого вещества в растениях, их органах и тканях изменяется в широких пределах. Так, содержание сухого вещества в плодах огурцов, бахчевых культур может составлять до 5% от общей их массы, в кочанах капусты, корнях редиса и турнепса — 7-10, корнеплодах столовой свеклы, моркови и луковицах лука — 10-15, в вегетативных органах большинства полевых культур — 15-20, корнеплодах сахарной свеклы и клубнях картофеля — 20-25, в зерне хлебных злаков и бобовых культур — 85-90, семепах масличных культур — 90-95%.

Подавляющая доля сухого вещества растений (80—95%) приходится на белки и другие азотистые соединения, углеводы (сахара, крахмал, клетчатка, пектиновые вещества), жиры, количество которых определяет качество урожая (табл. 4).

В зависимости от вида и характера использования продукции ценность отдельных органических соединений может быть различной. В зерне злаков основными веществами, определяющими качество продукции, являются белки и крахмал. Большим содержанием белка среди зерновых культур отличается пшеница, а крахмала — рис и пивоваренный ячмень. При использовании ячменя для пивоваренного производства накопление белка ухудщает качество сырья. Нежелательно также накопление белка и небелковых азотистых соединений в корнях сахарной свеклы, используемых для производства сахара. Зернобобовые культуры и бобовые травы отличаются повышенным содержанием белков и меньшим — углеводов, качество их урожая зависит прежде всего от размеров накопления белка. Качество клубней картофеля оценивается по содержанию крахмала. Цель возделывания льна, конопли и хлопчатника — получение волокна, состоящего из клетчатки. Повышенное количество клетчатки в зеленой массе и сене однолетних и многолетних трав ухудшает их кормовые достоинства. Масличные культуры выращиваются для получения жиров — растительных масел, используемых как для пищевых, так и промышленных целей.

Качество продукции сельскохозяйственных культур может зависеть и от наличия других органических соединений — витаминов,

Средний химический состав сельскохозяйственных растений (%) (данные Б. П. Плешкова)

Растение и часть урожая	Вода	Белки	Сырой протени *	Жары	Крахмал, саха- ра и другие углеводы	Клетчатка	Зола
Пшеница (зерно) Рожь (зерно) Овес (зерно) Ячмень (зерно) Рис (очищенное зермо) Кукуруза (зерно) Гречиха (зерно) Горох (зерно) Фасоль (зерно) Соя (зерно) Подсолнечник (ядра) Лен (семена) Картофель (клубни) Сахарная свекла (корни) Кормовая свекла (корни) Морковь (корни) Лук репчатый Клевер (зеленая масса) Ежа сборная (зеленая масса)	12 14 13 13 11 15 13 13 11 8 78 75 86 85 70	14 12 11 9 7 9 20 18 29 22 23 1,3 1,0 0,8 0,7 3,0 2,1	16 13 12 10 8 10 11 23 20 34 25 26 2,6 1,5 3,6 3,0	2,0 4,2 2,2 2,8 4,7 2,8 4,7 2,1 6,0 0,1 0,2 0,8 1,2 0,1 0,2 0,8 1,2	65 68 55 65 78 66 62 53 58 27 7 16 17 19 9 8	2,53 10,55 0,08 10,5 0,08 10,9 10,8 10,5 10,5 10,5 10,5	1,650 1,550 1,055 1,055 1,00 1,00 1,00 1,00

^{*} Сырой протеин включает белки и небелковые авотистые вещества.

алкалоидов, органических кислот и пектиновых веществ, эфирных и горчичных масел.

Неравноценны по качеству и отдельные группы органических соединений, содержащиеся в различных сельскохозяйственных культурах. Так, белки растений отличаются по аминокислотному составу (особое значение имеет содержание в них ряда так называемых «незаменимых» аминокислот, не синтезируемых в животных организмах, например лизина и триптофана) и переваримости. Растительные масла отдельных масличных культур существенно различаются по составу жирных кислот, а вследствие этого — по свойствам и качеству.

Содержание отдельных групп органических соединений в сельскохозяйственной продукции может изменяться в зависимости от видовых и сортовых особенностей растений, условий выращивания, способов возделывания и применения удобрений.

Условия питания растений имеют важное значение для повышения валового сбора наиболее ценной части урожая и улучшения его

качества. Например, усиление азотного питания увеличивает относительное содержание в растениях белка, а повышение уровня калийного питания обеспечивает большее накопление углеводов сахарозы в корнях сахарной свеклы, крахмала в клубнях картофеля. Созданием соответствующих условий питания с помощью удобрений можно повысить накопление наиболее ценных в хозяйственном отношении органических соединений в составе сухого вещества растений.

Сухое вещество растений имеет в среднем следующий элементарный состав (в весовых процентах): углерод — 45, кислород — 42, водород — 6,5, азот и зольные элементы — 6,5. Всего в растениях обнаружено более 70 элементов.

В состав углеводов, жиров и прочих безазотистых органических соединений входят углерод, кислород и водород, а белков и других азотистых органических веществ — еще и азот. Эти элементы — С, О, Н и N — получили название органогенов. На долю их в среднем приходится около 95% сухого вещества растений.

При сжигании растительного материала органогены улетучиваются в виде газообразных соединений и паров воды, а в золе остаются преимущественно в виде окислов многочисленные «зольные» элементы, которые составляют в среднем около 5% массы сухого вещества.

Накопление сухого вещества растений происходит благодаря усвоению углекислого газа через листья (так называемое воздушное питание), а воды, азота и зольных элементов — из почвы путем «корневого» или минерального питания.

Азота и таких зольных элементов, как фосфор, калий, кальций, магний, сера и железо, содержится в растениях довольно много (от нескольких процентов до сотых долей процента сухого вещества). Эти элементы называются макроэлементами.

Для нормальной жизнедеятельности растениям необходимы также бор, марганец, молибден, медь, цинк, кобальт и ванадий. Содержание каждого из этих элементов в растениях составляет тысячные и стотысячные доли процента, они получили название м и кроэлементов.

В состав растений в относительно небольших количествах входят кремний, натрий и хлор, а также большое число так называемых ультрамикроэлементов, содержащихся в исключительно малых величинах — от 10⁻⁶ до 10⁻⁸%. Физиологические функции этих элементов в растительных организмах еще не выявлены.

Содержание азота и зольных элементов в растениях и их органах может сильно колебаться и определяется биологическими особенностями культуры, возрастом и условиями питания. Количество азота в растениях тесно коррелирует с содержанием белка, а его всегда больше в семенах и молодых листьях, чем в соломе созревших культур. В ботве азота больше, чем в клубнях и корнеплодах. Зола составляет от 2 до 5% сухого вещества товарной части основных сельскохозяйственных культур и 6—14% в молодых листьях

и соломе зерновых, ботве корне- и клубнеплодов. Наиболее высоким содержанием золы (до 20% и более) отличаются листовые овощи (салат, шпинат).

У растений имеются значительные различия в составе и содержании зольных элементов. В золе семян зерновых и бобовых культур на долю окислов фосфора, калия и магния приходится до 90%, а среди них преобладает фосфор (40—50% массы золы). В золе листьев и соломы фосфора значительно меньше, и в ней преобладают калий и кальций. Зола клубней картофеля, корней сахарной свеклы и других корнеплодов преимущественно представлена окисью калия (40—60% массы золы). В золе корнеплодов содержится значительное количество окиси натрия, а в соломе злаков — окиси кремния.

Доказана безусловная необходимость макро- и микроэлементов для растений. Эти элементы могут входить в состав органических соединений (например, азот и сера в аминокислоты и белки, магний — в хлорофилл и т. д.), обеспечивают аккумуляцию и перенос энергии в растениях (фосфор), участвуют в обмене углеводов, жиров и белков как компоненты ферментов — биологических катализаторов белковой природы (молибден, медь, марганец, цинк и др.) либо, не входя в состав органических соединений, обусловливают физико-химические свойства отдельных клеточных и субклеточных структур и возможность нормального обмена веществ в клетках.

Функции каждого из макро- и микроэлементов в растениях строго специфичны, ни один элемент не может быть заменен другим. Недостаток любого из макро- или микроэлементов вызывает нарушение обмена веществ и физиологических функций у растений, приводит к ухудшению их роста и развития, снижению урожайности. При остром дефиците даже одного какого-либо элемента питания у растений появляются характерные признаки голодания и они погибают.

В агрономической практике необходимость регулирования питания растений в отношении отдельных элементов далеко не одинакова. Микроэлементы необходимы растениям в ограниченных количествах (вынос с урожаем сельскохозяйственных культур составляет лишь десятки или сотни граммов на гектар), и потребность в них может полностью удовлетворяться за счет почвы, а нередко только за счет запасов в семенах. Однако в сельскохозяйственной практике может появляться недостаток микроэлементов у более требовательных к их наличию культур, выращиваемых на почвах с низким содержанием доступных для растений форм микроэлементов.

Применение микроудобрений может значительно повысить урожай сельскохозяйственных культур и его качество.

Кальций, магний и сера содержатся в большинстве почв в количествах, достаточных для обеспечения питания растений. Кроме того, их вносят в почву с известью и гипсом и в составе органических и минеральных удобрениї.

Чаще всего для улучшения питания растений в естественных условиях возникает необходимость в дополнительном внесении в почву азота, фосфора и калия.

Различные сельскохозяйственные культуры отличаются по общему выносу питательных веществ и но соотношению потребляемых элементов питания (табл. 5).

Таблица 5 Примерный вынос основных элементов питания с урожаем сельскохозяйственных культур (по обобщенным данным разных авторов)

Культура	Урожай	Выноситс	кг на 1 га)	_	
	основной продукции (в ц с 1 га)	N	P ₂ O ₅	K,O	_
Зерновые Зернобобовые Картофель Сахарная свекла Кукуруза (зеленая масса) Капуста Хлопчатник	30—35 25—30 200—250 400—500 500—700 500—700 30—40	90—110 100—150 120—200 180—250 150—180 160—230 160—220	30—40 35—45 40—60 55—80 50—60 65—90 50—70	60—90 50—80 180—300 250—400 180—250 220—320 180—240	ι

Содержание элементов питания в основной и побочной продукции разнообразных сельскохозяйственных культур определяется прежде всего их видовыми особенностями, а также сортом и условиями выращивания. Среднее количество основных элементов питания (в %) в урожае отдельных сельскохозяйственных культур приведено в таблице 6.

Азота и фосфора значительно больше в зерне, корне- и клубнеплодах, чем в соломе и ботве. Калия же больше в соломе и ботве.

Для создания высокого урожая капуста, картофель, сахарная свекла, хлопчатник, подсолнечник, кормовые корнеплоды и силосные культуры потребляют гораздо больше питательных веществ, чем зерновые хлеба.

С повышением урожайности вынос питательных веществ из почвы возрастает. Прямой пропорциональности между величиной урожая и размером выноса основных элементов питания часто не наблюдается. Содержание питательных веществ в растениях и общий вынос их с урожаем могут сильно зависеть от климатических, почвенных и агротехнических условий.

В урожае зерновых колосовых культур соотношение $N: P_2O_5: K_2O$ колеблется в небольших пределах и составляет 2.5-3.0:1:1.8-2.6, т. е. в среднем потребление азота в 2.8 раза, а калия в 2.2 раза больше, чем фосфора (табл. 7).

Для сахарной свеклы, кормовых и овощных корнеплодов, картофеля, подсолнечника, капусты и ряда других культур характерно гораздо большее поглощение калия, чем азота, и соотношение $N: P_2O_5: K_2O$ может составлять 2.5-3.5:1:3.5-5.0. При выращивании корне- и клубнеплодов, подсолнечника в зависимости от условий возделывания может сильно изменяться структура урожая

Таблица 6 Содержание азота, фосфора и калия в сельскохозяйственных растениях

TA		Содерж	ание элементов	пинанил
Культура		N	P ₂ O ₆	K ₂ O
В % на	сухое	веществ	10	
Пшеница озимая:	ı		1	ĺ
зе рно		2,80	0,85	0,50
солома		0,45	0,20	0,90
Пшеница яровая: зерно		3,40	0,85	0,60
солома		0,67	0,20	0,75
Рожь озимая:			}	
зерно		2,20	0,85	0,60
солома		0,45	0,26	1,00
Ячмень:		0.40	0.05	0 55
зерно	Ì	$2,10 \\ 0,50$	0,85 0,20	0,55 1,00
солома Просо:		0,00	0,20	1,00
зерно		1,85	0,65	0.50
солома		<u>-</u>	0,18	1,59
Кукуруза:			ì	
зерно		1,91	0,57	0,37
Солома		0,75	0,30	1,64
Горох: зерно		4,50	1,00	1,25
солома		1,40	0,35	0,50
Гречиха:		-,		
зерно		1,80	0,57	0,27
солома		0,80	0,61	2,42
Лен:		, 00	4 25	4.00
семена		4,00	1,35 0,42	1,00 0,97
солома Конопля:		0,62	0,42	0,57
семена		3,50	1,69	0,94
солома		0,27	0,21	0,55
Подсолнечник:	1	·		i
семена		2,61	1,39	0,96
целое расте ние		1,56	0,76	5,25
Хлоцчатник: семена		3,00	1,10	1,25
волокно сырец	j	0,34	0,06	0,91
В % в	на сыру	ую массу		
Картофель:	1		I	i
клубни		0,32	0,14	0,60
ботва	ļ	0,30	0,10	0,85
Сахарная свекла:		0.94	0,08	0,25
корни		0,24 0,35	0,08	0,25
ботва Капуста — кочаны		0,33	0,09-0,12	0.27-0.
капуста — кочаны Гоматы — плоды		0,26	0,07	0,29-0,
		•	[\
	Į	ı	i .	l

Таблица 7 Среднее соотношение N:P₂O₅: K₂O в урожае различных культур

Культура	N	P ₂ O ₅	K ₂ O
Зерновые колосовые	2,8	1	2,2
Картофель	3,0	1	4,5
Сахарная свекла	2,9	1	5,3
Кормовая свекла	3,5	1	7,0

и наблюдаются резкие различия в размерах потребления основных элементов питания и соотношении между ними.

Так, в лесостепных районах сахарная свекла на каждые 100 ц корней и соответствующего количества ботвы потребляет 50 кг азота, 15 кг P_2O_5 и 60 кг K_2O , в Нечерноземной зоне при большем количестве ботвы на каждые 100 ц корней поглощается 80-100 кг азота, 35 кг P_2O_5 и 145 кг K_2O .

Таблица 8
Вынос основных элементов питания с урожаем

(в кг на 10 ц основнои продукции)				
Продукция	N	P,O,	K,O	
Верно:				
озпмой ржи	31,0	14,0	26,0	
озимой пшеницы	37,0	13,0	23,0	
яровой пшенпцы	47,0	12,0	18,0	
RH 9М P R	29,0	11,0	20,0	
овса	33,0	14,0	29,0	
гороха	66,0	16,0	20,0	
Золокна льна	80,0	40,0	70,0	
Зеленая масса кукурузы) 2,5	1,0	3,5	
Корнеплоды:	1		i	
сахарной свеклы	5,9	1,8	7,5	
кормовой свеклы	4,9	1,5 1,7 1,9	6,7	
турнепса	4,8	1,7	5,7	
кормовой моркови	5,2 5,5	1,9	6,0	
брюквы	5,5	3,1	7,7	
столовой моркови	3,2	1,6	5,0	
Белокочанная капуста	3,3	1,3	4,4 3,6	
Соматы	2,6	0,4	3,6	
)гурцы	1,7	1,4	2,6	
Тук	3,0	1,2	4,0	
Слубни картофеля Сено:	6,2	2,0	14,5	
	10.7	5.6	450	
клеверное	19,7	5,6	15,0	
люцерновое	26,0	6,5	15,0	
тимофеечное вики	15,5 22,7	7,0 6,2	24,0	
_	17,0	7,0	10,0 18,0	
лу гов о е	1 11,0	1,0	10,0	

При наиболее благоприятных почвенно-климатических условиях, высокой агротехнике в сочетании с правильным применением удобрений обеспечивается наиболее продуктивное использование растениями питательпых веществ из почвы и внесенных удобрений. При этом, как правило, достигается минимальное потребление элементов питания на единицу урожая основной сельскохозяйственной продукции. Средние размеры потребления азота, фосфора и калия на формирование 10 ц товарной продукции основных сельскохозяйственных культур приведены в таблице 8.

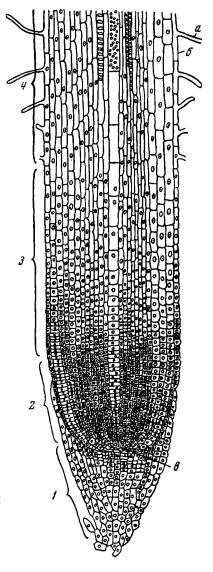
ПОГЛОЩЕНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ РАСТЕНИЯМИ

В отличие от животных и большинства микроорганизмов, для которых характерен гетеротрофный тип питания, т. е. использование ранее синтезированных другими организмами органических соединений, высшие растения являются автотрофами — они сами синтезируют органические вещества из минеральных соединений и воды.

Доказана возможность непосредственного усвоения растениями витаминов, антибиотиков, ростовых веществ, аминокислот. Однако количественная сторона такого усвоения весьма незначительна, и оно имеет весьма ограниченное значение в питании растений.

Основным процессом, приводящим к образованию органических веществ в растениях, является фотосинтез. В результате этого процесса солнечная энергия в зеленых частях растений, содержащих хлорофилл, превращается в химическую энергию, которая используется на синтез углеводов из СО, и воды.

На световой стадии процесса фотосинтеза происходит реакция разложения воды с выделением кислорода и образованием богатого энергией соединения (АТФ) и восстановленных продуктов. Эти соединения участвуют на темновой стадии в синтезе углеводов и других органических соединений из СО₂.


Из простых углеводов путем дальнейших превращений в растениях образуются более сложные углеводы (крахмал, клетчатка и др.), а также другие безазотистые органические соединения — органические кислоты, жиры и т. д. Синтез аминокислот, а затем белка и других органических азотсодержащих соединений в растениях осуществляется за счет минеральных соединений азота (а также фосфора и серы) и промежуточных продуктов обмена — синтеза и разложения — углеводов. На образование разнообразных сложных органических соединений, входящих в состав растений, затрачивается энергия, аккумулированная в процессе фотосинтеза и выделяющаяся при окислении ранее образованных органических соединений в процессе дыхания.

Интенсивность фотосинтеза зависит от освещения, содержания углекислого газа в воздухе, обеспеченности растений водой и элементами минерального питания.

Рис. 2. Первичное строение корня (схема): 1 — корневой чехлик; 2 — зона делящихся клеток; 3 — зона растяжения клеток; 4 — вона образования корневых волосков (a — волоски, b — волоски, b — инициальные клетки).

В процессе фотосинтеза растения усваивают поступившую через листья из атмосферы. Лишь углекислоту небольшая часть СО, (до 5% от общего потребления) может поглощаться растениями через корни. Через листья растения могут усваивать серу в виде SO₂ из атмосферы, а также азот и зольные элементы из водных растворов при некорневых подкормках растений. Однако в естественных условиях через листья главным образом осуществляется углеродное питание, а основным путем поступления в растения воды, азота и зольных элементов является корневое питание.

Азот и зольные элементы деятельной глощаются из почвы поверхностью корневой системы растений в виде ионов (анионов и катионов), находящихся в почвенном растворе или в обменнопоглощенном состоянии. Так, азот может поглошаться в виде аниона NO₅ и катиона NH₄ (только бобовые растения способны в симбиозе с клубеньковыми бактериями усванвать молекулярный азот атмосферы), фосфор и сера — в виде анионов фосфорной и серной кислот — $H_2PO_4^-$ и SO_4^2 , а калий, кальций, магний, натрий, железо и алюминий - в виде соответствующих катионов К+, Са²⁺, Mg²⁺, Na⁺ Fe³⁺ m Al³⁺.

Размер корневой системы, ее строение и характер распределения в почве у различных видов растений резко различаются. Но независимо от морфологии и мощности развития корневой системы масса корней с глубиной снижается, а суммарная поверхность возрастает. Активная часть корня, благодаря которой происходит поглощение элементов минерального питания из почвы, представлена молодыми растущими корешками. По мере нарастания каждого отдельного корешка верхняя его часть утолщается, покрывается снаружи оп-

робковевшей тканью и теряет способность к поглощению питательных веществ. Рост корня происходит у самого его кончика, защищенного корневым чехликом (рис. 2). В непосредственной близости к окончанию корешков располагается зона делящихся меристематических клеток. Выше ее находится зона растяжения, в которой наряду с увеличением объема клеток и образованием в них центральной вакуоли начинается дифференциация тканей с формированием флоемы — нисходящей части сосудисто-проводящей системы растений, по которой происходит передвижение органических веществ из надземных органов в корень. На расстоянии 1—3 мм от кончика растущего корня находится зона образования корневых волосков. В этой зоне завершается формирование и восходящей части проводящей системы — ксилемы, по которой осуществляется передвижение воды (а также частично поглощенных ионов и синтезированных в корнях органических соединений) от корня в надземную часть растений.

Корневые волоски представляют собой тонкие выросты наружных клеток с диаметром 5—72 мкм и длиной от 80 до 1500 мкм. Число корневых волосков достигает нескольких сотен на каждый миллиметр поверхности корня в этой зоне. Благодаря образованию корневых волосков резко, в десятки раз, возрастает деятельная, способная к поглощению питательных веществ поверхность корневой системы, находящаяся в контакте с почвой (табл. 9). От кончика корня до окончания зоны образования корневых волосков наружная целлюлозная оболочка клетки не имеет кутикулы и легко проницаема. Кроме того, оболочки у клеток пронизаны тяжами, соединяющими цитоплазму организма в единую систему.

Именно эта часть корня, лишенная кутикулы, и принимает участие в поглощении воды и питательных веществ из почвы. В зонах роста и растяжения клеток корня поглощенные элементы питания усваиваются на месте. Наиболее интенсивно поглощение ионов осуществляется в зоне образования корневых волосков, и поступившие ионы отсюда передвигаются в надземные органы растений. Необходимо отметить, что корень является не только органом поглоще-

Таблица 9 Сравнительное развитие корней и корневых волосков у различных культур

	Корни		Корневые волоски		
Культура	длина (м)	поверхность (см²)	число (млн.)	длина (м)	поверхность (см²)
Овес Рожь Соя Мятлик луговой	4,57 6,4 2,9 38,4	316 503 406 2129	6,3 12,5 6,1 51,6	743,7 1649,4 59,94 5166,26	3419 7677 277 15806

Примечание. Определение длины и поверхности корней и корневых волосков проводилось в полевых условиях в пробе почвы, отбиравшейся буром диаметром 7,5 см и высотой 15 см.

ния, но и синтеза отдельных органических соединений, в том числе аминокислот и белков. Последние используются для обеспечения жизнедеятельности и процессов роста самой корневой системы, а также частично транспортируются в надземные органы.

По мере нарастания корня происходит непрерывное пространственное перемещение зоны активного поглощения в почве.

Морфология корня, динамика формирования корневой системы, мощность ее развития и глубина проникновения в почву определяются прежде всего биологическими особенностями растений. На скорость роста и характер развития корневой системы большое влияние оказывают физические свойства почвы, распределение в ней влаги и питательных веществ.

Сильно разветвленная корневая система растений образует огромную поглощающую поверхность. Всличина ее изменяется в ходе вегстации растений, достигая чаще всего максимума в период цветения (табл. 10).

Таблица 10 Изменение площади поверхности корней яровой пшеницы (по Д. А. Сабинину)

	Поверхность к	Поверхность корней (м²) на куст		
Фаза разрития	общая	в том числе деятельная	• Отношение деятель- ной поверхности корней к недеятельной	
Кущение Выход в трубку Начало цветения Конец цветения Восковая спелость	9,60 29,39 36,73 44,09 30,86	4,91 10,87 17,07 24,76 14,80	1,05 0,59 0,86 1,30 0,92	

Влияние корневой системы распространяется на большой объем почвы благодаря постоянному росту корней и возобновлению корневых волосков. Старые корневые волоски (продолжительность жизни каждого корневого волоска составляет одни сутки) отмирают, а новые непрерывно образуются уже на других участках растущего корешка. На том участке корня, где корневые волоски отмерли, кожица пробковеет, поступление воды и поглощение питательных веществ из почвы через нее ограничивается. Скорость роста корней у однолетних полевых культур может достигать 1 см в сутки. Растущие молодые корешки извлекают ионы из почвенного раствора в объеме почвы радиусом вокруг себя около 20 мм, а обменнопоглощенные ионы — от 2 до 8 мм.

Поглощение элементов питания растениями из почвы может происходить пассивным и активным путем, причем ведущая роль принадлежит активному поглощению.

Пассивное (неметаболическое) поглощение обусловлено процессами диффузии и осмоса и происходит за счет свободной поверх-

ностной энергии, а также солнечной энергии, расходуемой на транспирацию. В этом случае элементы питания поглощаются вместе с водой из почвенного раствора и транспортируются из корней в надземные органы растений с восходящим потоком по единой гидростатической системе, состоящей из свободного пространства клеток, сообщающегося со свободным пространством ксилемы (под свободным понимается пространство клетки - межклетники и поры клеточной оболочки, не занятые живой питоплазмой и составляющие 8-10% объема клетки, в которое минеральные элементы могут проникать путем диффузии в виде ионов). Испарение воды через листья создает дефицит давления, который по системе свободного пространства клеток листьев, затем ксилему передается на систему свободного пространства тканей корня. Пассивное поглощение элементов питания может происходить только по градиенту концентрации, то есть от большей концентрации к меньшей, и не требует затраты метаболической энергии.

Активное, или метаболическое, поглощение. Совершенно очевидно, что пассивное поглощение, основанное на явлениях диффузии и осмоса, не может иметь существенного значения в питании растений, носящем ярко выраженный избирательный характер.

Отдельные элементы питания поступают в растения в ином соотношении по сравнению с содержанием их в почвенном растворе. Одни элементы поглощаются корнями в большем количестве, а другие — в меньшем, даже при одинаковой их концентрации в окружающей среде.

Поглощение питательных веществ корнями и дальнейшее их передвижение в растении происходят со скоростью, почти в 100 раз превышающей возможную за счет процессов диффузии и осмоса, Это было убедительно показано в исследованиях с применением метода меченых атомов.

Поглощение элементов питания растениями происходит против градиента концентрации. Концентрация отдельных ионов в клеточном соке, как и в пасоке растений (транспортируемой из корней в надземные органы по ксилеме), значительно выше, чем в почвенном растворе. Поглощение ионов осуществляется и против электрохимического градиента.

Известно также, что не существует прямой зависимости поглощения питательных веществ корнями растений от интенсивности транспирации, от количества поглощенной и испарившейся воды.

Все это подтверждает положение о том, что поглощение питательных веществ растениями осуществляется не просто путем пассивного всасывания корнями почвенного раствора вместе с содержащимися в нем солями, а представляет активный физиологический процесс, который неразрывно связан с жизнедеятельностью корней и надземных органов растений, с процессами фотосинтеза, дыхания и обмена веществ, и обязательно требует затраты энергии.

Первым структурным образованием клетки на пути поглощаемых веществ является ее оболочка. Благодаря наличию довольно круп-

ных пор клеточная оболочка не является препятствием для проникновения ионов. Пектиново-целлюлозные клеточные стенки обладают высокой адсорбирующей способностью, благодаря чему на внутренней поверхности оболочки могут осуществляться процессы концентрирования ионов из почвенного раствора. При изменении реакции среды (за счет выделения углекислоты при дыхании корней и других корневых выделений) адсорбированные ионы могут освобождаться, проникать в свободное пространство клеток корня и адсорбироваться на поверхности цитоплазмы.

Протопласт каждой клетки имеет на поверхности тончайшую пограничную пленку — липидно-белковую мембрану. Эта цитоплазматическая мембрана образована соединениями, в состав которых входит большое количество функциональных групп, и отдельные ее участки имеют положительный или отрицательный заряд. На этих участках наружной поверхности протоплазмы может происходить одновременная адсорбция из раствора катионов и анионов.

Адсорбция ионов на поверхности цитоплазматической мембраны носит обменный характер и может происходить против градиента концентрации. Обменным фондом катионов и анионов у растений могут быть ионы H^+ и OH^- , а также H^+ и HCO_3^- , образующиеся при диссоциации угольной кислоты, выделяемой при дыхании.

Адсорбированные на внешней поверхности цитоплазмы катионы и анионы проникают через мембрану внутрь клетки с помощью специальных переносчиков белковой природы. Перенос ионов через мембрану осуществляется против градиента концентрации и электрохимического градиента и требует затраты энергии. Основная роль в функционировании переносчиков принадлежит в связи с этим белкам, обладающим АТФ-азной активностью.

Имеются указания, что цитоплазматическая мембрана является не просто барьером на пути проникновения ионов в клетку, а наиболее активным ее компонентом, в котором происходит вовлечение ионов в процессы обмена веществ. Возможно также проникновение адсорбированных ионов через мембрану благодаря наличию в ее составе сократительных белков, обладающих изменчивой структурой. Сократительные белки, очевидно, участвуют и в процессе пиноцитоза — захвате капель окружающего клетку раствора путем выпячивания или внутреннего прогиба в пограничном слое цитоплазмы, а также в вовлечении поверхности мембран с адсорбированными ионами внутрь клетки за счет образования каналов и складок.

В последние годы показано, что явление пиноцитоза, присущее простейшим организмам, может быть одним из путей поглощения питательных веществ и растепиями, однако о масштабе распространения этого процесса сведений пока нет.

Первоначальный этап поглощения питательных веществ растениями из почвенного раствора — адсорбция ионов на поглощающей поверхности корня — постоянно возобновляется, поскольку адсорбированные ионы непрерывно перемещаются внутрь клеток корня.

Поступившие в клетку ионы в неизменном виде либо уже в форме транспортных органических соединений, синтезируемых в корнях, передвигаются в надземные органы — стебли и листья, в места наиболее интенсивной их ассимиляции.

Передвижение веществ из клетки в клетку осуществляется по плазмодесмам, соединяющим цитоплазму клеток растений в единую систему — так называемый симпласт. При передвижении по симпласту часть ионов и метаболитов может выделяться в свободное пространство и передвигаться далее пассивно с восходящим током воды, а затем вновь поглощаться и расходоваться на процессы метаболизма либо транспортироваться далее по системе активного переноса.

Поглощение корнями и транспорт питательных веществ тесно связаны с процессами обмена веществ и энергии в растительных организмах, с жизнедеятельностью и ростом как надземных органов, так и корней.

Процесс дыхания является источником энергии, необходимой для активного поглощения элементов минерального питания. Этим обусловливается тесная связь между интенсивностью поглощения растениями элементов питания с интенсивностью дыхания корней. При ухудшении роста корней и торможении дыхания (при недостатке кислорода в условиях плохой аэрации или избыточном увлажнении почвы) поглощение питательных веществ резко ограничивается.

Для нормального роста и дыхания корней необходим постоянный приток к ним энергетического материала — продуктов фотосинтеза (углеводов и других органических соединений) из надземных органов. При ослаблении фотосинтеза уменьшается образование и передвижение ассимилятов в корни, вследствие чего ухудшается их жизнедеятельность и снижается поглощение питательных веществ из почвы.

Поступившие в растения ионы минеральных солей включаются в обмен веществ уже в клетках корня, связываются его клеточными структурами или непосредственно транспортируются в надземные органы. Например, нитраты (NO_3^-) могут восстанавливаться до аммиака в зоне поглощения, здесь же происходит образование аминокислот при аминировании поступающих по флоэме из надземных органов органических кислот. Аминокислоты частично используются на синтез функциональных и структурных белков в корневой системе. Транспорт азота в надземные органы из корней может происходить в форме NO_3^- или NH_4^+ , либо в виде аминной группы аминокислот и пептидов — низкомолекулярных промежуточных продуктов синтеза белка.

Некоторые ионы (например, К+, Са²⁺, Na+ и др.) не входят в состав каких-либо органических соединений в растении, а образуют с цитоплазмой нестойкие, лабильные адсорбционные комплексы, обусловливая ее физико-химические и коллоидно-химические свойства и возможность нормального протекания в клетках

процессов обмена веществ. Из таких непрочных соединений эти ионы могут быть легко освобождены и даже могут выделяться из тканей растений в окружающий раствор в результате экзоосмоса.

Другие ионы (например, NH_4^+ , $H_2PO_4^-$; SO_4^{2-}) идут непосредственно на синтез органических веществ (аминокислот, белков, нуклеиновых кислот, фосфатидов и др.), образуют устойчивые соединения, в результате чего происходит прочное связывание их в растении. Связывание ионов минеральных солей с образованием органических соединений или неустойчивых адсорбционных комплексов с протоплазмой обусловливает непрерывность поступления их в растение.

Различные элементы питания в неодинаковой степени используются в процессах внутриклеточного обмена в растении для синтеза органических веществ и построения новых органов и тканей. Этим определяется неравномерность поступления отдельных ионов в корни, избирательное поглощение их растениями. Больше поступает в растение из почвы тех ионов, которые в большей степени необходимы для синтеза органических веществ, для построения новых клеток, тканей и органов.

Если в растворе содержится NH_4Cl , то растением будут поглощаться в обмен на ионы водорода больше катионы NH_4^+ , поскольку они используются для синтеза аминокислот, а затем и белков. Ионы Cl^- необходимы растению в ограниченном количестве, они в значительно меньшей степени связываются в растении, поэтому поглощение их будет ограниченно. В почвенном растворе в этом случае будут накапливаться ионы H^+ и Cl^- , произойдет его подкисление. Если в растворе присутствует $NaNO_3$, то растение будет больше поглощать анионов NO_3^- в обмен на анионы HCO_3^- . В растворе будут накапливаться ионы Na^+ и HCO_3^- , и он будет подщелачиваться.

В результате избирательного поглощения растениями ионов из раствора, т. е. большего поглощения анионов или катионов солей, происходит изменение его реакции. Неравномерное поглощение растениями катионов и анионов из состава минеральной соли обусловливает ее физиологическую кислотность или физиологическую щелочность.

Соли, из которых в большем количестве поглощается анион, чем катион ($NaNO_3$, KNO_3 , $Ca(NO_3)_2$), в результате чего происходит подщелочение раствора, называются ф и з и о л о г и ч е с к и щ ел о ч н ы м и.

Соли, из которых катион поглощается растениями сильнее, чем анион $(NH_4Cl, (NH_4)_2SO_4, (NH_4)_2CO_3, KCl, K_2SO_4)$, в результате чего происходит подкисление раствора, называются ф и з и о л оги ческ и к и с л ы м и.

Если в почве нет веществ, способных нейтрализовать накапливающуюся кислоту (например, CaCO₃), то подкисление раствора при внесении физиологически кислых солей может быть настолько сильным, что растение будет плохо расти и может даже погибнуть.

ВЛИЯНИЕ УСЛОВИЙ ВНЕШНЕЙ СРЕДЫ НА ПОГЛОЩЕНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ РАСТЕНИЕМ; РОЛЬ МИКРООРГАНИЗМОВ

Поглощение растениями питательных веществ в большой степени зависит от свойств почвы — реакции и концентрации почвенного раствора, температуры, аэрации, влажности, содержания в почве доступных форм питательных веществ, а также от продолжительности и интенсивности освещения и других условий внешней среды. Поступление питательных веществ в растение заметно снижается при плохой аэрации почвы, низкой температуре, избытке или резком недостатке влаги в почве. Особенно сильное влияние на поступление питательных веществ оказывает реакция почвенного раствора, концентрация и соотношение солей в нем. При избыточной концентрации солей в почвенном растворе (например, в засоленных почвах) поглощение растениями воды и питательных веществ резко замедляется.

Корни растений имеют очень высокую усвояющую способность и могут поглощать питательные вещества из сильно разбавленных растворов. Большинство растений может нормально развиваться при содержании 20-30 мг N и K_2O и 10-15 мг P_2O_5 на 1 л раствора и даже при значительно более низкой концентрации, если она постоянно возобновляется.

Важное значение для нормального развития корней имеет также соотношение солей в растворе, его физиологическая уравновешенность. Физиологическая уравновешенность. Физиологическая уравновешенность. Физиологически уравновешенным называется раствор, в котором отдельные питательные вещества находятся в таких соотношениях, при которых происходит наиболее эффективное использование их растением. Раствор, представленный какой-либо одной солью, физиологически неуравновешен.

Одностороннее преобладание (высокая концентрация) в растворе одной соли, особенно избыток какого-либо одновалентного катиона, оказывает вредное действие на растение. Развитие корней происходит лучше в многосолевом растворе. В нем проявляется антагонизм ионов, каждый ион взаимно препятствует избыточному поступлению другого иона в клетки корня. Например, Ca^{2+} в высоких концентрациях тормозит избыточное поступление K^+ , Na^+ или Mg^{2+} , и наоборот. Такие же антагонистические отношения существуют и для ионов K^+ и Na^+ , K^+ и NH_4^+ , K^+ и Mg^{2+} , NO_3^- и $H_2PO_4^-$, Cl^- и $H_2PO_4^-$ и др.

Физиологическая уравновещенность легче всего восстанавливается при введении в раствор солей кальция. При наличии кальция в растворе создаются нормальные условия для развития корневой системы, поэтому в искусственных питательных смесях Са²⁺ должен преобладать над другими ионами.

Особенно сильно ухудшается развитие корней и поступление в них питательных веществ при высокой концептрации попов водорода, т. е. при повышенной кислотности раствора. Высокая концептрация в растворе ионов водорода оказывает отрицательное влияние

на физико-химическое состояние цитоплазмы клеток корня. Наружные клетки корня ослизняются, нарушается их нормальная проницаемость, ухудшается рост корней и поглощение ими питательных веществ. Отрицательное действие кислой реакции сильнее проявляется при отсутствии или недостатке других катионов, особенно кальция, в растворе. Кальций тормозит поступление ионов H+, поэтому при повышенном количестве кальция растения способны переносить более кислую реакцию, чем без кальция (табл. 11).

Таблица 11 Влияние CaCl₂ на рост корней пшеницы при различной кислотности раствора

		Среднял дл	ина корпей (мм	і) при рН	
Вариант опыта	5,3	4,9	4,7	4,3	4,0
Bez CaCl ₂ C CaCl ₂	25 64	29 64	24 70	3 67	0 48

Реакция раствора оказывает влияние на интенсивность поступления отдельных ионов в растение и обмен веществ. При кислой реакции повышается поступление анионов (вместе с ионами H^+), но затрудняется поступление катионов, нарушается питание растений кальцием и магнием и тормозится синтез белка, подавляется образование сахаров в растении. При щелочной реакции усиливается поступление катионов и затрудняется поступление анионов.

При любом ухудшении роста корней поглощение питательных веществ растениями снижается. Основной запас питательных веществ находится в почве в форме различных труднорастворимых соединений, для усвоения которых необходимо активное воздействие корней на твердую фазу почвы и тесный контакт между корнями и частицами почвы. Поглощающая поверхность корней и контакт их с почвой резко увеличиваются вследствие развития на корнях многочисленных корневых волосков и непрерывного их возобновления в период роста растений.

В процессе жизнедеятельности растений корни выделяют в окружающую среду углекислоту и некоторые органические кислоты, а также ферменты и другие органические вещества. Под влиянием этих выделений, концентрация которых бывает особенно высокой в зоне непосредственного контакта корней с частицами почвы, происходит растворение содержащихся в ней минеральных соединений фосфора, калия и кальция, вытеснение в раствор катионов из поглощенного состояния, высвобождение фосфора из его органических соединений.

Питательные вещества наиболее активно усваиваются растениями из той части почвы, которая находится в непосредственном контакте с корнями. Поэтому все мероприятия, способствующие лучшему развитию корпей (хорошая обработка почвы, известкова-

ние кислых почв и т. д.), обеспечивают и лучшее использование растениями питательных веществ из почвы.

Питание растений осуществляется при тесном взаимодействии с окружающей средой, в том числе с огромным количеством разнообразных микроорганизмов, населяющих почву. Количество микроорганизмов особенно велико в той части почвы, которая непосредственно соприкасается с поверхностью корней (ризосфера). Используя в качестве источника пищи и энергетического материала корневые выделения, микроорганизмы активно развиваются на корнях и вблизи них и способствуют мобилизации питательных веществ почвы.

Ризосферные и почвенные микроорганизмы играют важную роль в превращении питательных веществ и вносимых в почву удобрений. Микроорганизмы разлагают находящиеся в почве органические вещества и вносимые органические удобрения, в результате чего содержащиеся в них элементы питания переходят в усвояемую для растений минеральную форму. Некоторые микроорганизмы способпы разлагать труднорастворимые минеральные соединения фосфора и калия и переводить их в доступную для растений форму. Ряд бактерий, усваивая молекулярный азот воздуха, обогащает почву азотом. С жизнедеятельностью микроорганизмов связано также образование в почве гумуса.

При определенных условиях в результате деятельности микроорганизмов питание и рост растений могут ухудшаться. Микроорганизмы потребляют для питания и построения своих тел азот и зольные элементы, т. е. являются конкурентами растений в использовании минеральных веществ.

Не все микроорганизмы полезны для растений. Некоторые из них выделяют ядовитые для растений вещества или являются возбудителями различных заболеваний. В почве имеются также микробы, восстанавливающие нитраты до молекулярного азота (денитрификаторы), в результате их деятельности происходят потери азота из почвы.

В связи с этим одна из важных задач земледелия — создание соответствующими приемами агротехники благоприятных условий для развития полезных микроорганизмов и ухудшение условий для развития вредных.

ОТНОШЕНИЕ РАСТЕНИЙ К УСЛОВИЯМ ПИТАНИЯ В РАЗНЫЕ ПЕРИОДЫ РОСТА

В разные периоды роста растения предъявляют неодинаковые требования к условиям внешней среды, в том числе и к питанию. Поглощение растениями азота, фосфора и калия в течение вегетации происходит неравномерно. В начальный период роста растения потребляют относительно небольшие количества питательных веществ. Потребление их резко увеличивается в период наиболее интенсивного роста надземных органов — стеблей и листьев. В период плодообразования, когда нарастание вегетативной массы заканчивается, потребление питательных веществ снижается, а затем вовсе приоста-

навливается и дальнейшее образование органического вещества происходит в основном за счет повторного использования (реутилизации) питательных веществ, ранее накопленных в растении. В первый же период вегетации поступление питательных веществ значительно опережает накопление общей массы органического вещества.

Необходимо различать понятия о критическом периоде питания (когда размеры потребления могут быть ограниченными, но недостаток элементов питания в это время резко ухудшает рост и развитие растений) и периоде максимального поглощения, который характеризуется наиболее интенсивным потреблением питательных веществ.

Различные растения отличаются по интенсивности поглощения питательных элементов в течение вегетационного периода. Все зерновые злаковые (за исключением кукурузы), лен, конопля, ранний картофель, некоторые овощные культуры отличаются коротким периодом интенсивного питания, основное количество питательных веществ они потребляют в сжатые сроки. Например, озимая рожь за осенний период поглощает 25—30% от всего количества питательных веществ, тогда как сухая масса растений за этот период достигает всего лишь 10% конечного урожая.

Яровая пшеница за сравнительно короткий промежуток — от выхода в трубку до конца колошения (около месяца) — потребляет $\frac{2}{3} - \frac{3}{4}$ всего количества питательных веществ.

Картофель наибольшее количество питательных веществ потребляет в июле; за этот месяц поглощается почти 40% азота, более 50% фосфора и 60% калия от конечного содержания их в урожае.

Некоторые растения, такие, как кукуруза, подсолнечник, сахарная свекла, характеризуются более плавным и растянутым потреблением питательных веществ, поглощение которых продолжается почти до конпа вегетапии.

Отдельные элементы питания поглощаются растениями с различной интенсивностью: у кукурузы, например, наиболее быстро идет потребление калия, затем азота и значительно медленнее поглощается фосфор (табл. 12).

Как видно из таблицы, к концу второго месяца жизни кукуруза поглощает 70% калия, 40% азота и только 28% фосфора. Поглоще-

Таблица 12 Ход поглощения питательных элементов растениями кукурузы по периодам

Периоды	Поглоще потре	Сухан масса от общего		
	N	P2O6	K ₂ O	урожая (%)
20 мая — 20 июня 20 июня — 20 июля 20 июля — 19 августа 19 августа — 18 сентября	2 38 48 12	1 27 46 26	4 6 6 30 0	1 23 46 30

ние калия полностью заканчивается к периоду образования метелки, а азота — к периоду сформирования зерна. Поступление фосфора более растянуто и продолжается почти до конца вегетации.

Конопля в первый месяц интенсивно поглощает азот и калий. Поступление азота полностью завершается через три, а калия— через пять недель после появления всходов, тогда как поглощение фосфора продолжается почти до конца вегетации.

Потребление основных элементов питания сахарной свеклой также неравномерно. В первую декаду после всходов отношение P:N:K в растениях равно 1:1,5:1,4, затем, в период интенсивного нарастания листьев, это соотношение изменяется в сторону увеличения поглощения азота и калия, составляя в мае 1:2,5:3, в июне — 1:3:3,5, в июле — 1:4:4. В августе, когда происходит образование корней и накопление в них сахара, соотношение между этими элементами становится 1:3,6:5,5, т. е. в этот период особенно сильно увеличивается поглощение калия.

Неодинаковая интенсивность поглощения растениями отдельных элементов питания должна учитываться при внесении различных удобрений. Особенно важно обеспечить благоприятные условия питания растений в раннем возрасте. В это время вследствие высокой энергии ростовых процессов при слаборазвитой еще корневой системе растения особенно требовательны к условиям питания. Они потребляют сравнительно небольшое количество всех питательных веществ, но весьма чувствительны как к недостатку, так и к избытку их в растворе. В прикорневой зоне в этот период питательные вещества должны находиться в легкорастворимой форме, но концентрапия их не должна быть высокой, с преобладанием фосфора над азотом и калием. Начальный период роста — критический в отношении фосфорного питания. Недостаток фосфора в раннем возрасте настолько сильно угнетает растения, что урожайность резко снижается лаже при обильном питании фосфором в последующие периоды (табл. 13).

В начальный период роста очень важно также обеспечить достаточное питание растений азотом. У злаковых зерновых культур уже в период развертывания первых трех-четырех листочков начинается закладка и дифференциация репродуктивных органов — колоса или метелки. Недостаток азота в этот период даже при достаточном азот-

Таблица 13 Влияние периодического питанил растений фосфором на урожайность (вегетационный опыт с ячменем Н. С. Авдонина)

	Урожайность (%)	
Условия питания	общая	верно
Нормальное питание фосфором все время Растения не получали фосфора первые 15 дней Растения без фосфора в возрасте от 45 до 60 дней	100 17,4 102	100 0 104

ном питании в последующем приводит к уменьшению числа колосков в метелке или колосе и снижению урожая.

Потребность растений в азоте особенно резко возрастает в период интенсивного роста вегетативных органов. Например, лен наибольшее количество азота потребляет от фазы «елочки» до бутонизации. Недостаток азота в это время приводит к ухудшению роста и снижению урожайности. Во второй половине вегетации, в фазах цветения н плодоношения, потребность в азоте у многих растений уменьшается, а в калии и фосфоре увеличивается.

Знание особенностей питания растений в разные периоды роста способствует более эффективному применению удобрений. Так, для сахарной свеклы в начале роста большое значение имеет достаточное обеспечение фосфором, что достигается внесением суперфосфата в рядки при посеве. В период интенсивного роста листьев очень важно создание высокого уровня питания азотом путем достаточного внесения удобрений до посева либо подкормкой азотными удобрениями.

Повышенное азотное питание в этот период способствует усиленному росту ботвы, формированию мощного ассимиляционного анпарата, что имеет большое значение в последующем для лучшего роста корня и накопления в нем сахара.

Обильное авотное питание в период образования корня и накопления в нем сахара нежелательно, так как стимулирует рост ботвы в ущерб росту корня и сахаронакоплению. При этом в корнях снижается содержание сахара, повышается количество вредного небелкового азота. В этот период необходимо достаточное снабжение растений калием и фосфором.

Регулируя условия питания растений по периодам роста в соответствии с их потребностью путем соответствующего внесения удобрений, можно направленно воздействовать на урожайность культуры и качество продукции.

АГРОХИМИЧЕСКИЕ СВОЙСТВА ПОЧВЫ В СВЯЗИ С ПИТАНИЕМ РАСТЕНИЙ И ПРИНЕНЕМ УДОБРЕНИЙ

Для правильного применения удобрений необходимо не только учитывать потребности растений в элементах питания в разные периоды роста, но и знать химический состав и биологические, физикохимические и химические свойства почвы, которые определяют уровень ее плодородия и характер превращения в ней внесенных удобрений.

СОСТАВ ПОЧВЫ

Почва представляет собой многофазную систему, она состоит из твердой, жидкой (почвенный раствор) и газовой (почвенный воздух) фаз.

Почвенный воздух занимает обычно 1/4-1/3 объема верхнего пахотного горизонта почвы при нормальном увлажнении. Он отличается от атмосферного повышенным содержанием углекислого газа (в среднем около 1%) и меньшим — кислорода. Состав почвенного воздуха зависит от механического состава и структуры почвы, ее пористости, наличия и характера растительности, интенсивности газообмена между почвой и атмосферой, изменения температуры и атмосферного давления. Образование углекислого газа в почве происходит в результате разложения органического вещества микроорганизмами и дыхания корней. Образующийся в почве углекислый газ частично выделяется в атмосферу, а частично растворяется в почвенном растворе. При избыточном увлажнении и плохой аэрации в почвенном воздухе повышается содержание углекислоты и снижается количество кислорода, что отрицательно сказывается на развитии растений и микроорганизмов.

Почвенный раствор — наиболее подвижная, изменчивая и активная часть почвы. Он играет важную роль в почвообразовании и плодородии почв. Жидкая фаза для растений — непосредственный источник воды и питательных веществ. Состав и концентрация почвенного раствора измецяются в результате разнообразных биологических, химических, физических и физико-химических процессов. Между жидкой, газообразной и твердой фазами почвы постоянно устанавливается подвижное (динамическое) равновесие. Поступление солей в почвенный раствор зависит от хода процессов

выветривания и разрушения минералов, разложения органического вещества в почве, внесения органических и минеральных удобрений.

Концентрация почвенного раствора незасоленных почв невелика и колеблется от десятых долей до нескольких граммов веществ на литр. В засоленных почвах содержание растворенных веществ достигает десятков, а иногда и сотен граммов на литр.

В почвенном растворе содержатся минеральные и органические вещества, органо-минеральные соединения, а также растворенные газы — углекислый газ, кислород, аммиак и др. Из минеральных соединений в составе почвенного раствора могут находиться анионы HCO_3^- , Cl^- , NO_3^- , SO_4^{2-} , $H_2PO_4^-$ и катионы Ca^{2+} , Mg^{2+} , Na^+ , NH_4^+ , K^+ . Железо и алюминий содержатся в почвенном растворе в основном в виде устойчивых комплексов с органическими веществами, а в кислых почвах — в виде катионов. Наиболее важное значение для питания растений имеет присутствие и постоянное пополнение в почвенном растворе ионов K^+ , Ca^{2+} , Mg^{2+} , NH_4^+ , NO_3^- , SO_4^{2-} и $H_2PO_4^-$.

Соотношение между миперальными, органическими и органоминеральными компонентами почвенного раствора определяется многими факторами и прежде всего типом почвы и степенью засоления. Часть веществ (от 1/4 до 1/10 и меньше от содержащихся в почвенном растворе) может находиться в коллоидной форме. Кроме органических и органо-минеральных соединений, в коллоиднорастворимой форме присутствуют кремнекислота, полуторпые окислы железа и алюминия.

От концентрации и степени диссоциации растворенных веществ зависит осмотическое давление почвенного раствора и поглощение воды корнями растений. Осмотическое давление почвенного раствора значительно ниже, чем в клеточном соке растений. На засоленных почвах с большим осмотическим давлением поглощение воды культурными растениями невозможно, и в этих условиях произрастают лишь дикие растения с исключительно высоким осмотическим давлением клеточного сока.

Концентрация солей и осмотическое давление почвенного раствора зависят от влажности почвы и являются весьма динамичными величинами.

Огромное значение для питания растений, как уже указывалось ранее, имеет реакция почвенного раствора.

Твердая фаза почвы состоит из минеральной и органической частей.

Около половины твердой фазы приходится на кислород, одна треть — на кремний, свыше 10% — на алюминий и железо, лишь 7% составляют остальные элементы (табл. 14). В почве по сравнению с литосферой (твердой оболочкой земной коры) содержится в 20 раз больше углерода и в 10 раз больше азота, что связано с жизнедеятельностью организмов. Процессы выветривания и почвообразования сопровождаются относительным (по сравнению с элементарным составом литосферы) повышением содержания кислорода, водорода

Сречний химический (элементарный) состав твердой фазы почвы (по А. П. Виноградову)

Элемент	%	Элемент	%	Элемент	%
Кислород Кремний Алюминий Железо Углерод Кальций Калий Натрий Магний Водород Титан Азот Фосфор Сера Марганец	49,0 33,0 7,1 3,7 2,0 1,3 1,3 0,6 0,6 (0,50) 0,46 0,10 0,08 0,08	Барий Стронций Цирконий Фтор Хром Хлор Ванадий Рубидий Цинк Церий Никель Литий Медь Бор Свинец	0,05 0,03 0,03 0,02 0,02 0,01 6.10-3 5.10-3 4.10-3 3.10-3 2.10-3 1.10-3	Галлий Олово Кобальт Торий Мышьяк Йод Цезий Молибден Уран Бериллий Германий Кадмий Селен Ртуть	(10-3) (10-3) (10-3) 8·10-4 6·10-4 5·10-4 5·10-4 1·10-4 (10-4) (10-4) (10-6) 8·10-11

п кремния в почве и снижением количества алюминия, железа, кальция, магния, натрия, калия и ряда других элементов. Азот практически полностью содержится в органической части почвы, углерод, фосфор, сера, кислород и водород — как в минеральной, так и в органической, а остальные из указанных выше в таблице элементов — в минеральной части почвы.

Минеральная часть составляет 90—99% веса почв (только в органогенных почвах доля ее снижается до 10% и менее) и имеет сложный химический состав. Она представлена кристаллическими кремнекислородными и алюмокремнекислородными (или силикатными и алюмосиликатными) минералами, аморфными и кристаллическими гидроокисями алюминия, железа и кремния, а такжеразличными минеральными солями.

Наиболее распространен в почве кремнекислородный минерал кварц (SiO₂, двуокись кремния). Содержание его во всех почвах превышает 60%, а в легких песчаных достигает 90% и более. Кварц характеризуется большой механической прочностью и устойчивостью к химическому выветриванию.

Из первичных алюмосиликатных минералов в почве широко распространены калиевые и натрие-калиевые полевые шпаты, в меньшей степени — калийная и железисто-магнезиальные слюды. Постепенно разрушаясь, эти минералы служат источником калия, кальция, магния и железа для растений.

Первичные минералы кварц, шпаты и слюды обычно присутствуют в почве преимущественно в виде частиц песка и пыли.

Вторичные, или глинистые минералы, образующиеся при изменении первичных минералов — полевых шпатов и слюд, — в про-

цессе выветривапия и почвообразования по своей химической природе относятся к гидроалюмо- и ферросиликатам. Они находятся в почве главным образом в виде мелкодисперсных илистых и коллоидных частиц и обладают большой суммарной поверхностью. Глинистые минералы по строению кристаллической решетки, степени дисперсности и другим свойствам объединяются в три группы: каолинита, монтмориллонита и гидрослюд.

В составе твердой фазы почвы всегда содержится сравнительно немного труднорастворимых солей фосфорной кислоты (фосфаты кальция, магния, железа и алюминия), а в отдельных почвах может быть значительное количество малорастворимых карбонатов кальция, магния и сульфата кальция.

В почве постоянно протекают процессы превращения труднорастворимых соединений в легкорастворимые и, следовательно,
более доступные растениям. Одновременно происходят и обратные
процессы. Направленность этих превращений зависит от многих факторов — температурного и водного режимов, деятельности микроорганизмов, обработок почвы, внесения органических и минеральных
удобрений и т. д. Обогащение почвенного раствора углекислым газом, выделяющимся при дыхании корней и разложении органического вещества, усиливает растворяющее действие раствора на минеральные труднорастворимые соединения в почве, способствует
переводу их в усвояемые для растений формы.

Различные механические фракции почвы имеют неодинаковый минералогический состав и отличаются по содержанию элементов питания. Более крупные механические частицы почвы — песчаные и пылеватые — состоят в основном из кварца, поэтому характеризуются высоким содержанием кремния, но меньшим — алюминия, железа, кальция, магния, калия, фосфора и других элементов.

В состав мелкодисперсной коллоидной и илистой фракции входят преимущественно алюмосиликаты, поэтому в ней больше содержится алюминия и железа, а также кальция, магния, калия, натрия, фосфора и других элементов.

Более тяжелые глинистые и суглинистые почвы богаче элементами питания, чем песчаные и супесчаные. Мелкодисперсные минеральные частицы почвы (глинистые минералы) вместе с органическим веществом обусловливают адсорбционные процессы в почве, се поглотительную способность, которая играет важную роль при взаимодействии удобрений с почвой.

Органическое вещество почвы составляет небольшую часть твердой фазы, но имеет большое значение для ее плодородия и питания растений. Содержание органического вещества в почвах колеблется от 1—2% (в подволистых почвах и сероземах) до 10% и более в мощных черноземах.

Органическое вещество почвы представлено в основном (на 85-90%) гумусом и лишь небольшая часть — негумифицированными остатками растительного, микробного и животного происхождения.

Различные типы почв отличаются не только по общему содержанию гумуса, но и по его составу и свойствам. В гумусе дерновоподзолистых почв отношение гуминовых кислот к фульвокислотам составляет 0,4—0,6, а в гумусе черноземов 1—1,5 и больше. Кроме того, гуминовые кислоты черноземов менее дисперсны и имеют более сложное строение. Это в значительной степени обусловливает более высокую подвижность и способность к микробиологическому разложению органического вещества дерново-подзолистых почв по сравнению с черноземами.

Общий запас гумуса в пахотном слое почв с относительно невысоким его содержанием — сероземах и дерново-подзолистых — составляет 20-50 т, в черноземах — 150-200 т, а в метровом слое соответственно 50-120 и 300-800 т на 1 га (табл. 15).

Таблица 15 Содержание гумуса в основных типах почв (по И. В. Тюрину)

T	Содержание гумуса в	Запасы гумуса (т на 1 га) в слое почвы		
Почва	пахотном	0-20 см	0—100 или	
	слое (%)	(в среднем)	0—120 см	
Дерново-подзолистая Серая лесная оподзоленная Чернозем: выщелоченный типичный обыкновенный южный Темно-каштановая Каштановая и светло-каштановая Серозем Краснозем	0,5-3	53	80—120	
	4-6	109	150—300	
	7-8	192	500—600	
	10-12	224	650—800	
	6-8	137	400—500	
	4-5	—	300—350	
	3-4	99	200—250	
	1,5-3	—	100—200	
	1-2	37	50	
	5-7	153	150—300	

В органическом веществе находится основной запас азота, поэтому почвы, содержащие больше органического вещества, отличаются и большим количеством азота. В органическое вещество входят также сера и фосфор. При его минерализации азот, фосфор и сера переходят в усвояемую для растений минеральную форму. Гуминовые кислоты и фульвокислоты в почве, а также образующаяся при разложении органических веществ углекислота оказывают растворяющее действие на труднорастворимые минеральные соединения фосфора, кальция, калия, магния, в результате эти элементы переходят в доступную для растений форму.

Гумусовые вещества паряду с мелкодисперсными минеральными частидами почвы участвуют в адсорбционных процессах, определяют поглотительную способность почвы и ее буферность.

У Органическое вещество служит источником питания и энергетическим материалом для большинства почвенных микроорганизмов.

Гумусовые вещества почвы труднее подвергаются минерализации, чем органические соединения растительных остатков и негумифицированных веществ. При длительном возделывании сельскохозяйственных культур без внесения удобрений может происходить значительное уменьшение общего количества гумуса и азота в почве. Размеры ежегодной минерализации органического вещества в пахотном слое дерново-подзолистых почв 0,6—0,7 т, а черноземов—1,0 т на 1 га, с образованием соответствующего количества доступного растениям минерального азота. При среднем содержании азота в гумусе около 5% на каждую единицу поглощенного растениями из почвы азота должно минерализоваться двадцатикратное количество гумуса.

Наиболее интенсивно разлагается гумус в чистых парах, где в почве может накапливаться до 100—120 кг нитратного азота на 1 га. Одновременно с минерализацией органического вещества в почве постоянно происходит новообразование гумуса, и изменение общего его количества определяется соотношением между этими процессами.

Систематическое применение органических и минеральных удобрений обеспечивает не только повышение урожайности сельскохозяйственных культур, но и сохранение и накопление запасов гумуса и азота в почве. При увеличении количества поступающих в почву корневых и пожнивных остатков усиливаются процессы гумусообразования.

Содержание основных элементов питания в почвах и их доступность растениям. Разные типы почв отличаются по содержанию основных элементов питания (табл. 16).

Общий запас азота, фосфора и калия в большинстве почв составляет значительные величины, в десятки и сотни раз превышающие вынос их урожаем одной культуры. Однако основная масса питательных веществ находится в почве в виде соединений, недоступных для непосредственного питания растений. Валовой запас питательных веществ в почве характеризует лишь ее потенциальное плодоро-

Таблица 16 Валовое содержание азота, фосфора и калия в пахотпом слое разиых почв

	N		P _s O	5	K,O	
ма РОП	%	тыс. кг на 1 га	%	тыс. кг на 1 га	%	тыс. кг на 1 га
Дерново-под- золистые: песчаная суглинис- тая Черноземы Сероземы	0,02-0,05 0,05-0,13 0,2-0,5 0,05-0,15		0,03—0,06 0,04—0,12 0,1—0,3 0,08—0,2	39	0,5-0,7 1,5-2,5 2-2,5 2,5-3	_

дие. Для оценки эффективного плодородия почвы, действительной способности ее обеспечивать высокую урожайность сельскохозяйственных культур важное значение имеет содержание питательных веществ в доступных для растений формах.

Для питания растений доступны только те питательные вещества, которые находятся в почве в форме соединений, растворимых в воде и слабых кислотах, а также в обменно-поглощенном состоянии. Мобилизация питательных веществ, переход труднорастворимых соединений в усвояемую форму постоянно происходят в почве под влиянием биологических, физико-химических и химических процессов.

В разных почвах процессы мобилизации протекают с неодинаковой интенсивностью в зависимости от характера соединений, которыми представлены питательные вещества, климатических условий, уровня агротехники и т. д. Обычно эти процессы протекают медленно, и тех количеств, доступных для растений форм питательных веществ, которые образуются в почве за вегетационный период, бывает недостаточно для удовлетворения потребности растений. Поэтому почти на всех почвах внесение удобрений значительно повышает урожайность сельскохозяйственных культур.

ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ ПОЧВЫ

Большую роль в питании растений и в превращении внесенных в почву удобрений играет ее поглотительная способность. Основы современных представлений о поглотительной способности почвы были заложены работами акад. К. К. Гедройца. Под поглотительной способностью понимается способность почвы поглощать различные вещества из раствора, проходящего через нее, и удерживать их. К. Гедройц различал пять видов поглощения в почве.

Биологическая поглотительная способность связана с жизнедеятельностью растений и почвенных микроорганизмов, которые избирательно поглощают из почвы необходимые элементы минерального питания и предохраняют их тем самым от выщелачивания. После отмирания корней, растительных остатков и тел микроорганизмов происходит их разложение и постепенная гумификация. Минерализация и последующее использование растениями ранее закрепленного в почве в органической форме азота, фосфора и серы протекают довольно медленными темпами. С большей скоростью высвобождаются азот и зольные элементы из плазмы микроорганизмов после их отмирания.

Интенсивность биологического поглощения зависит от аэрации, влажности и других свойств почвы, от количества и состава органического вещества, служащего источником пищи и энергетического материала для преобладающих в почве гетеротрофных микроорганизмов. Внесение в почву значительного количества бедного азотом органического вещества (соломы или соломистого навоза) вызывает быстрое размножение микроорганизмов, сопровождающееся интенсивным биологическим закреплением минерального азота, что приводит к ухудшению азотного питания растений.

Биологическое поглощение служит средством закрепления нитратного азота, который никаким другим путем в почве не удерживается. Неусвоенные растениями и микроорганизмами нитраты могут вымываться из почвы. Особенно велика опасность таких потерь на легких почвах в зонах достаточного увлажнения и орошаемого земледелия. Нитратный азот под действием микроорганизмовденитрификаторов теряется из почвы в виде молекулярного азота и его газообразных окислов.

Механическая поглотительная способность обусловлена свойством почвы, как всякого пористого тела, задерживать даже мелкие частицы из фильтрующихся суспензий. Механическим поглощением объясняется сохранение и характер распределения в почве вносимых нерастворимых удобрений (фосфоритной муки, извести) и ила, оседаемого из паводковых вод на заливные угодья. Благодаря механической поглотительной способности в почве сохраняется также наиболее ее ценная коллоидная фракция.

Физическая поглотительная способность — это положительная или отрицательная адсорбция частицами почвы целых молекул растворенных веществ. Случаи положительной физической адсорбции почвой растворимых минеральных солей неизвестны. Отрицательная молекулярная адсорбция наблюдается при взаимодействии почвы с растворами хлоридов и нитратов, что обусловливает высокую подвижность их в почве.

Химическая поглотительная способность связана с образованием нерастворимых и труднорастворимых в воде соединений в результате химических реакций между отдельными растворимыми солями в почве (понами в почвенном растворе).

Так, анионы угольной и серной кислот с двухвалентными катионами кальция и магния дают труднорастворимые в воде $CaSO_4$, $CaCO_3$ и $MgCO_3$, выпадающие в осадок. Особую роль химическое поглощение играет в превращении фосфора в почве. При внесении суперфосфата, содержащего фосфор в виде водорастворимой соли $Ca(H_2PO_4)_2$ — однозамещенного фосфата кальция, в почвах происходит интенсивное химическое связывание фосфора. В кислых почвах (в подзолистых и красноземах), содержащих много полуторных окислов, химическое поглощение фосфора идет с образованием труднорастворимых фосфатов железа и алюминия — $AlPO_4$ и $FePO_4$. В почвах, насыщенных основаниями и содержащих бикарбонат кальция в почвенном растворе (черноземы, сероземы), химическое связывание фосфора происходит в результате образования слаборастворимых двух- и трехзамещенных фосфатов кальция $CaHPO_4$ и $Ca_3(PO_4)_2$.

Химическое поглощение (фиксация) фосфора обусловливает слабую подвижность его в почве и снижает доступность растениям этого элемента из внесенных в почву легкорастворимых форм удобрений. По способности к фиксации фосфора почвы располагаются в следующем порядке: красноземы>дерново-подзолистые почвы>сероземы>черноземы.

Физико-химическая, или обменная, поглотительная способность имеет исключительно важное значение при взаимодействии удобрений с почвой. Физико-химическое поглощение — это способность мелкодисперсных (от 0,2 до 0,001 мкм) коллоидных частиц почвы поглощать из раствора различные катионы. Поглощение одних катионов сопровождается вытеснением в раствор эквивалентного количества других, ранее связанных твердой фазой почвы.

Вся совокупность органических и минеральных коллоидных частиц почвы (представленных гумусовыми веществами, глинистыми минералами и гидроокислами железа и алюминия), участвующих в обменном поглощении катионов, была названа К. К. Гедройцем почвенным поглощающим комплексом или, сокращенно, ППК.

Способность органических и минеральных коллоидных частиц к обменному поглощению катионов обусловлена их отрицательным зарядом. В почве имеются и положительно и отрицательно заряженные коллоиды, но, как правило, в большинстве почв преобладают отрицательно заряженные частицы.

В естественном состоянии почвы всегда содержат определенное количество поглощенных катионов. В поглощенном состоянии в почвах могут быть катионы Ca²⁺, Mg³⁺, H⁺, Al³⁺, Na⁺, K⁺, NH⁺ и др. Эти катионы могут обмениваться на другие катионы, находящиеся в растворе.

Обмен катионами между раствором и почвенным поглощающим комплексом происходит в строго эквивалентных количествах.

Реакция обмена катионов протекает очень быстро. При внесении в почву легкорастворимых удобрений (KCl, NH_4Cl , NH_4NO_3 и др.) они сразу же вступают во взаимодействие с почвенным поглощающим комплексом, катионы их поглощаются почвой в обмен на катионы, ранее находившиеся в поглощенном состоянии.

Реакция обмена катионов обратима, так как поглощенный почвой катион может быть снова вытеснен в раствор:

$$\begin{split} &(\Pi\Pi\mathrm{K})\,\mathsf{Ca} + 2\mathsf{KCl} \, \ensuremath{\longrightarrow} \, (\Pi\Pi\mathrm{K}) \, \ensuremath{\mathrm{K}} + \mathsf{CaCl_2}; \\ &(\Pi\Pi\mathrm{K})\,\mathsf{Ca} + 2\mathrm{NH_4Cl} \, \ensuremath{\longrightarrow} \, (\Pi\Pi\mathrm{K}) \, \ensuremath{\mathrm{NH_4}}^4 + \mathsf{CaCl_2}. \end{split}$$

В зависимости от концентрации раствора, его объема п природы обменивающихся катионов между катионами раствора и катионами почвенного поглощающего комплекса устанавливается некоторое подвижное равновесие. При изменении состава почвенного раствора это равновесие смещается, в результате одни катионы переходят из раствора в поглощенное состояние, а другие — из поглощенного состояния в почвенный раствор. При внесении минеральных удобрений, например KCl, концентрация почвенного раствора повышается, катионы удобрения вступают в обменную реакцию с катионами почвенного поглощающего комплекса и поглощаются почвой.

При усвоении какого-либо катиона растениями концентрация его в растворе уменьшается, что вызывает переход этого катиона из поглощенного состояния в раствор в обмен на другие катионы, содержащиеся в почвенном растворе. Чем выше степень насыщенности поглощающего комплекса данным катионом, тем легче и быстрее он вытесняется в раствор. Количество катионов, вытесняемых из поглощенного состояния в раствор, возрастает с повышением концентрации раствора, а при одинаковой концентрации — с увеличением объема раствора вытесняющей соли.

Разные катионы обладают неодинаковой способностью к поглощению. Чем больше заряд (валентность) катиона и его атомная масса, тем сильнее он поглощается и труднее вытесняется из поглощенного состояния другими катионами. Исключение из этого правила составляют ионы H+, которые имеют наименьшую атомную массу, но обладают высокой энергией поглощения и способностью вытеснять другие катионы из ППК.

Емкость поглощения и состав поглощенных катионов у разных почв. Разные почвы содержат неодинаковое количество способных к обмену поглощенных катионов (табл. 17). Общее содержание в почве всех обменнопоглощенных катионов называется емкостью поглощения. Она выражается в миллиграмм-эквивалентах на 100 г почвы. Например, если в 100 г почвы в поглощенном состоянии содержится 200 мг Са, 24 мг Мg и 9 мг NH₄, то емкость поглощения этой почвы будет $\frac{200}{20} + \frac{24}{12} + \frac{9}{18} = 12,5$ м.-экв. на 100 г (20-эквивалентная масса кальция, 12 — магния, 18 — аммония).

Величина емкости поглощения характеризует поглотительную способность почв. Она зависит от механического и минералогического состава почвы и общего содержания в ней органического вещества. Почвы с малым количеством коллоидной фракции (песчаные и супесчаные) имеют невысокую емкость поглощения. Чем больше в почве минеральных и органических коллоидных частиц, тем выше ее поглотительная способность. У глинистых и суглинистых почвемкость поглощения больше, чем у песчаных и супесчаных. Богатые перегноем черноземы отличаются значительно более высокой емкостью поглощения (40—60 м.-экв. на 100 г), чем подзолистые почвы и сероземы (10—15 м.-экв. на 100 г).

Невысокая емкость поглощения дерново-подзолистых почв обусловливается более низким содержанием перегноя и преобладанием в минеральной коллоидной фракции глинистых минералов типа каолинита, которые имеют малую поглотительную способность (5—15 м.-экв. на 100 г минерала). Черноземы не только богаче перегноем, но и в мелкодисперсной минеральной фракции этих почв больше минералов монтмориллонитовой группы, которые отличаются высокой поглотительной способностью (80—100 м.-экв. на 100 г минерала).

Поглотительная способность почвы оказывает большое влияние на превращение в ней минеральных удобрений, определяет степень

подвижности их в почве. На почвах с малой поглотительной способностью (песчаных и супесчаных) при внесении легкорастворимых удобрений возможно вымывание питательных веществ и излишнее повышение концентрации раствора, поэтому азотные и калийные удобрения на таких почвах лучше вносить небольшими дозами и незадолго до посева. На почвах с высокой поглотительной способностью вымывания питательных веществ и избыточного увеличения концентрации раствора не происходит.

Разные почвы отличаются не только по общей емкости поглощения, но и по составу поглощенных катионов. В большинстве почв в составе поглощенных катионов преобладает Ca^{2+} , второе место занимает Mg^{2+} и в значительно меньших количествах находится K^+ и NH_4^+ . Сумма Ca^{2+} и Mg^{2+} обычно составляет около 90% общего количества обменнопоглощенных катионов. В кислых почвах (подзолистых и красноземах) среди поглощенных катионов значительную часть занимают H^+ и Al^{3+} , а в солонцовых почвах — Na^+ (табл. 17).

Таблица 17 Емкость поглощения у разных почв и содержание гумуса (по Н. П. Ремезову)

	Соде	ржание	(%)				-
•	минеральных частиц диаметром		поглощения (мэкв. на нвы)	Содержание погло- щенных катионов (мэкв. на 100 г почвы)			
Почва	гумуса	меньше 0,00025 мм	0,00025— 0,001 mm	. Емкость погле катионов (м< 100 г почвы)	Ca+Mg	Na	н
Дерново-подзолистая Серая лесная Чернозем: выщелоченный типичный обыкновенный южный Каштановая Серозем	2,5 3 8 10 6 4,5 2,5	25 15 55 55 33	5 10 10 10 5 5	15 20 50 65 35 30 27 15	8 16 40 60 31 28 25 14		7 4 10 5 2

Состав поглощенных катионов оказывает большое влияние на свойства почвы и условия роста растений. Кальций коагулирует органические и минеральные коллоиды. Поэтому преобладание в составе поглощенных катионов Ca²⁺, например на черноземах, способствует поддержанию прочной структуры и обусловливает хорошие физические свойства почвы. Насыщение почвы натрием (у солонцовых почв) вызывает пептизацию коллоидов, что приводит к их вымыванию, разрушению структурных агрегатов и ухудшению физических свойств почвы (плотное сложение, вязкость и т. д.). Кроме

того, при наличии натрия в почвенном поглощающем комплексе происходит вытеснение его в раствор в обмен на другие катионы с образованием соды, что вызывает щелочную реакцию раствора, неблагоприятную для развития растений:

$$(\Pi\Pi K) \frac{Na}{Na} + Ca(HCO_3)_2 \xrightarrow{\longrightarrow} (\Pi\Pi K)Ca + 2NaHCO_3.$$

При большом содержании в почвенном поглощающем комплексе ионов водорода и алюминия они могут переходить в раствор при взаимодействии с другими катионами и подкислять его:

$$(\Pi\Pi K)_{Al}^{H} + 4KCl \xrightarrow{\longrightarrow} (\Pi\Pi K)_{K}^{K} + HCl + AlCl_{3}.$$

Повышенная кислотность раствора и особенно высокое содержание в нем алюминия оказывают вредное действие на растения.

КИСЛОТНОСТЬ И БУФЕРНАЯ СПОСОБНОСТЬ ПОЧВЫ

Кислотность почвы создается ионами H⁺ в почвенном растворе и в поглощающем комплексе. Различают актуальную и потенциальную кислотность почвы. Актуальная кислотность обусловлена ионами H⁺ в почвенном растворе. Определяется она в водной вытяжке из почвы и измеряется величиной рH, которая обозначает отрицательный логарифм концентрации ионов H⁺ в растворе.

В зависимости от значения рН реакция почвенного раствора характеризуется следующим образом: рН 7,1—8 и более — щелочная, 7 — нейтральная, 6—6,5 — близкая к нейтральной, 5—5,5 — слабокислая, 4,5—5 — среднекислая и 4,5—4 и ниже — сильнокислая. Как щелочная, так и сильнокислая реакция почвенного раствора оказывает отрицательное действие на развитие растений и почвенных микроорганизмов.

Актуальная кислотность тесно связана с потенциальной (скрытой кислотностью), которая подразделяется на обменную и гидролитическую.

Ионы H+ и Al³⁺, находящиеся в почвенном поглощающем комплексе, при взаимодействии с растворами солей вытесняются из поглощенного состояния и подкисляют почвенный раствор. В растворе образуется соляная кислота и хлористый алюминий — гидролитически кислая соль:

$$(\Pi\Pi K)_{Al}^{H} + 4KCl \xrightarrow{\longrightarrow} (\Pi\Pi K)_{K}^{K} + HCl + AlCl_{s};$$

$$K$$
 $AlCl_{s} + 3H_{s}O = 3HCl + Al(OH)_{s}.$

Кислотность, обусловленная ионами водорода и алюминия, находящимися в поглощенном состоянии и способными вытесняться в рас-

твор при действии на почву какой-либо нейтральной соли, называется обменной кислотностью. Определяется она обработкой почвы раствором 1 н. КСl (солевая вытяжка) и выражается в м.-экв. на 100 г почвы или величиной рН. В солевой вытяжке определяют актуальную и обменную кислотность, поэтому рН солевой вытяжки обычно ниже, чем рН водной вытяжки.

Обменная кислотность характерна для дерново-подзолистых почв и красноземов, а также оподзоленных и выщелоченных черноземов. Это скрытая кислотность, но при действии на почву нейтральных солей она переходит в актуальную и оказывает отрицательное влияние на развитие растений. Особенно вредно действует переходящий в раствор алюминий.

При обработке почвы 1 н. КСІ из почвенного поглощающего комплекса переходит не весь водород, часть его ионов более прочно поглощена коллоидами почвы и нейтральными солями не вытесняется. Их можно вытеснить при действии на почву раствором гидролитически щелочной соли, например уксуснокислого натрия СН₃COONa.

Кислотность почвы, обусловленная менее подвижными ионами водорода, которые вытесняются при обработке почвы гидролитически щелочной солью, называется г и д р о л и т и ч е с к о й к и с л о т н о с т ь ю. С нею приходится встречаться чаще, чем с обменной, она свойственна большинству почв, даже черноземам. Эта кислотность включает менее подвижную часть поглощенных ионов H^+ , труднее обменивающихся на катионы почвенного раствора. Определять ее необходимо для решения ряда практических вопросов применения удобрений — установления дозы извести и возможности эффективного применения фосфоритной муки.

При обработке почвы раствором уксуснокислого натрия в раствор переходят все содержащиеся в почве ионы водорода (и алюминия), т. е. определяется сумма всех видов кислотности (актуальная, обменная и гидролитическая). Чтобы определить величину собственно гидролитической кислотности, необходимо из общего показателя вычесть величину обменной кислотности. Обычно этого не делают и термином «гидролитическая кислотность» обозначают общую кислотность почвы, выражая ее в м.-экв. на 100 г почвы.

Для характеристики почвы важно знать не только общее количество поглощенных ионов водорода, но и соотношение между ними и другими поглощенными катионами — $\mathrm{Ca^{2+}}$, $\mathrm{Mg^{2+}}$, $\mathrm{Na^{+}}$, $\mathrm{K^{+}}$ и др. Количество всех поглощенных катионов, кроме водорода и алюминия, в м.-экв. на 100 г почвы (сумма поглощенных оснований) обозначается буквой S, а общее количество поглощенного водорода — знаком H_{2} . Сложение их дает общую емкость поглощения почвы (T) в м.-экв. на 100 г почвы: $S+H_{2}=T$. Сумма поглощенных оснований (S), выраженная в процентах от емкости поглощения (T), называется степенью насыщенности почв основаниями и обозначается буквой V.

$$V^{0}/_{0} = \frac{S}{T} \cdot 100$$
, или $V^{0}/_{0} = \frac{S}{S + H_{2}} \cdot 100$.

Степень насыщенности основаниями — важный показатель характеристики кислотности почвы, она учитывается при определении нуждаемости почв в известковании (рис. 3). Чем меньше степень насыщенности основаниями (при одинаковой абсолютной величине кислотности), тем сильнее потребность почв в известковании.

Емкость поглощения и степень насыщенности почв основаниями определяют ее буферную способность, т. е. способность почвы сопротивляться изменению реакции почвенного раствора в сторону подкисле-

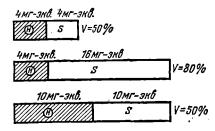


Рис. 3. Схематическое изображение зависимости между емкостью поглощения (T), гидролитической кислотностью (H_z) , суммой поглощенных оснований (S) и степенью насыщенности почвы основаниями.

ния или подщелачивания при внесении физиологически кислых или физиологически щелочных удобрений. Чем выше емкость поглощения почвы, тем сильнее ее буферная способность. Поглощенные основания (кальций, магний и др.) оказывают буферное действие против подкисления, а поглощенный водород — против подщелачивания реакции почвенного раствора:

$$(\Pi\Pi K)Ca + 2HNO_3 \stackrel{\longrightarrow}{\longrightarrow} (\Pi\Pi K)^H_H + Ca(NO_3)_2;$$

 $(\Pi\Pi K)^H_H + Ca(OH)_2 \stackrel{\longrightarrow}{\longrightarrow} (\Pi\Pi K)Ca + 2H_2O.$

В почвах, насыщенных основаниями, свободные кислоты (например, HNO_3) нейтрализуются вследствие поглощения почвой ионов H^+ кислоты в обмен на катионы Ca^{2+} , которые из поглощенного состояния вытесняются в раствор, и в нем вместо кислоты образуется нейтральная соль. В почвах, имеющих обменную или гидролитическую кислотность, нейтрализация щелочи происходит в результате поглощения ее катиона в обмен на ионы H^+ , которые вытесняются в раствор и связывают ионы OH^- с образованием воды.

Чем больше гидролитическая кислотность почвы, тем выше буферность ее против подщелачивания. Почвы с высокой степенью насыщенности основаниями (черноземы, сероземы) имеют высокую буферность против подкисления.

Размер буферного действия почвы зависит от емкости поглощения: чем она больше, тем выше буферная способность. Богатые перегноем и более глинистые и суглинистые почвы обладают высокой буферностью. Почвы с низкой емкостью поглощения — песчаные и супесчаные — имеют слабую буферность как против подкисления, так и против подщелачивания, поэтому на таких почвах не рекомендуется вносить большие дозы физиологически кислых и физиологически щелочных удобрений. Внесение высоких доз органических удобрений и известкование повышают буферность почвы против подкисления.

ХИМИЧЕСКАЯ МЕЛИОРАЦИЯ ПОЧВ

ИЗВЕСТКОВАНИЕ КИСЛЫХ ПОЧВ

В пашей стране почвы с повышенной кислотностью занимают значительные площади. Большая часть кислых почв находится в зоне дерново-подзолистых почв. Кроме того, кислой реакцией характеризуются красноземы, серые лесные, многие болотные почвы и частично выщелоченные черноземы.

Известкование — важнейшее условие интенсификации сельскохозяйственного производства на кислых почвах, повышения их плодородия и эффективности минеральных удобрений. В постановлении ЦК КПСС и Совета Министров СССР о развитии сельского хозяйства в Печерноземной зоне особо подчеркивается решающая роль известкования кислых почв в увеличении производства сельскохозяйственной продукции. В 1971—1975 гг. в стране произвестковано 35 млн. га, в том числе в РСФСР 16 млн. га.

При известковании устраняется избыточная кислотность почв, создаются благоприятные условия реакции среды для сельскохозяйственных культур и почвенных микроорганизмов, повышается плодородие почв и эффективность удобрений.

√Для каждого вида растений существует определенный наиболее благоприятный для роста и развития интервал реакции среды. Большинство сельскохозяйственных культур лучше произрастает и дает хорошие урожаи при близкой к нейтральной реакции среды (рН 6,5—7,5). Совершенно не переносят кислых почв люцерна, сахарная свекла, конопля и капуста — для них оптимум рН лежит в интервале от 7 до 7,5. Требовательны к нейтральной реакции (либо близкой к ней) ячмень, пшеница, кукуруза, все бобовые, за исключением люпинов, большинство овощных растений. Для ржи, овса, проса, гречихи, тимофеевки, редиса, томатов характерен широкий интервал рН, благоприятный для роста, но и для них лучшие условия создаются при слабокислой, близкой к нейтральной реакции почвы. Лен, картофель, чай, люпин лучше растут при слабокислой реакции и страдают как при подщелачивании свыше рН 6—6,5, так и при более сильном подкислении почвы.

Особенно чувствительны растения к повышенной кислотности почвы в первый период роста.

Неблагоприятное влияние кислой реакции на требовательные к нейтральной среде сельскохозяйственные культуры довольно сложно и многосторонне. В почвах прямое вредное влияние повышенной концентрации ионов водорода сочетается с косвенным воздействием ряда сопутствующих кислой реакции условий и факторов.

√Кислые почвы характеризуются неблагоприятными биологическими, физическими и химическими свойствами. Коллоидная часть их бедна кальцием и другими основаниями. Ионы водорода, вытесняя кальций из почвенного перегноя, повышают его дисперсность и подвижность, а насыщение водородом минеральных коллоидных частиц приводит к постепенному их разрушению.

Этим объясняется малое содержание в кислых почвах коллоидной фракции, они имеют поэтому плохие физические свойства, низкую емкость поглощения и слабую буферность.

В кислых почвах деятельность нитрифицирующих, азотфиксирующих бактерий и других полезных микроорганизмов подавлена; доступные для растений формы питательных веществ образуются слабо.

Отрицательное действие повышенной кислотности в значительной степени связано с увеличением подвижности алюминия и марганца в почве. При кислой реакции растворимость соединений алюминия и марганца возрастает и они угнетают растения. В этих условиях ухуд-шается и фосфорное питание растений.

В кислых почвах уменьшается подвижность молибдена и его может недоставать для нормального роста растений, особенно бобовых.

При кислой реакции затрудняется поступление в растение кальция и магния, играющих важную роль в жизни растений.

Высокая кислотность почвенного раствора ослабляет рост корней, нарушается их нормальная проницаемость и обмен веществ в них. Поэтому ухудшаются условия питания растений в целом. Эффективность удобрений на таких почвах резко снижена.

Действие извести на почву и урожайность

При внесении в почву извести она взаимодействует с углекислотой, находящейся в почвенном растворе, и нейтрализует ее. При этом нерастворимый в воде карбонат кальция превращается в растворимый бикарбонат кальция — гидролитически щелочную соль:

$$\begin{array}{c} {\rm CaCO_3 + H_2O + CO_2 = Ca(HCO_3)_2;} \\ {\rm Ca(HCO_3)_2 + 2H_2O = Ca(OH)_2 + 2H_2O + 2CO_2;} \\ {\rm Ca(OH)_2 \Longrightarrow Ca^{2+} + 2OH^-.} \end{array}$$

В почвенном растворе повышается концентрация ионов кальция, которые вытесняют водород из почвенного поглощающего комплекса:

$$(\Pi\Pi K)_{H}^{Ca} + Ca^{2+} + 2HCO_{3}^{-} \xrightarrow{} (\Pi\Pi K)_{Ca}^{Ca} + 2H_{2}CO_{3}.$$

$$(\Pi\Pi K)_{H}^{Ca} + Ca(OH)_{2} \xrightarrow{} (\Pi\Pi K)_{Ca}^{Ca} + 2H_{2}O.$$

Известь также нейтрализует свободные органические (гуминовые) кислоты, содержащиеся в кислых почвах:

$$2RCOOH + Ca(OH)_2 \rightleftharpoons (RCOO)_2Ca + 2H_2O.$$

Таким образом, при внесении извести в почвенном растворе нейтрализуются угольная кислота и органические кислоты, а в почвенном поглощающем комплексе — ионы водорода. Устраняя кислотность, известкование оказывает многостороннее положительное действие на свойства почвы, создает благоприятную среду для развития растений и полезных микроорганизмов. Замена поглощенного водорода кальцием сопровождается коагуляцией почвенных коллоидов, в результате уменьшается их разрушение и вымывание, улучшаются физические свойства почвы — структурность, водопроницаемость, аэрация. При внесении извести подвижные соединения алюминия и марганца в почве переходят в формы, нерастворимые в воде.

Под влиянием известкования уменьшается подвижность соединений бора в почве и ухудшаются условия питания растений этим элементом, поэтому на известкованных почвах эффективно внесение борных удобрений, особенно под культуры, требовательные к бору,—сахарную и кормовую свеклу, клевер, люцерну, гречиху, лук.

В результате снижения кислотности и улучшения физических свойств почвы под влиянием известкования усиливается жизнедеятельность микроорганизмов и мобилизация ими питательных веществ. В известкованных почвах интенсивнее протекает нитрификация, лучше развиваются азотфиксирующие бактерии (клубеньковые и свободноживущие), обогащающие почву азотом за счет азота воздуха, повышается содержание в почве доступных форм кальция, магния, калия, фосфора и молибдена. Улучшение питания растений азотом и зольными элементами связано и с тем, что на известкованных почвах растения развивают более мощную корневую систему, способную больше усваивать питательных веществ из почвы.

В естественных условиях основной источник кальция и магния для питания растений — обменно-поглощенные ионы. Водорастворимых соединений этих элементов в почве очень мало. Подавляющая часть кальция и магния находится в недоступной для растений форме — в составе минералов и труднорастворимых солей.

В сероземах, черноземах и тяжелых серых лесных и подзолистых почвах кальция и магния вполне достаточно для питания даже требовательных культур.

В легких дерново-подзолистых и серых лесных почвах содержится мало обменно-поглощенного кальция и особенно магния. Значительные количества этих элементов выщелачиваются из почвы. При кислой реакции почвы также ограничивается поступление катионов кальция и магния в растения вследствие антагонизма с ионами водорода. Известковые материалы на таких почвах могут иметь важное значение и как источники кальция и магния для питания растений.

Кальций потребляется растениями в значительных количествах. С урожаями сельскохозяйственных культур выносится этого

элемента (в расчете на CaO): зерновых 20—40 кг, зернобобовых и лубяных 40—60 кг, картофеля, сахарной свеклы, кукурузы, люпина 60—120 кг, бобовых трав, подсолнечника, табака— 120—250 кг, капусты— до 500 кг с 1 га.

Кальций играет важную роль в фотосинтезе и передвижении углеводов, в процессах первичной ассимиляции и обмене азота у растений. Он участвует в формировании клеточных оболочек и обусловливает физико-химическое состояние цитоплазмы клеток.

Недостаток кальция сказывается прежде всего на состоянии корневой системы растений: рост корней замедляется, не образуются корневые волоски, корни ослизняются и загнивают. При дефиците кальция задерживается также рост листьев, появляется хлоротичная пятнистость, они желтеют и отмирают. Кальций в растениях повторно не может использоваться, и признаки кальциевого голодания проявляются прежде всего на молодых листьях. Кальция больше в старых листьях.

В семенах содержится меньше кальция, чем в листьях и стеблях. Например, в зерне гороха кальция в расчете на CaO около 0.1%, а в соломе — до 2%.

Магния потребляют сельскохозяйственные культуры от 10 до 70 кг (в расчете на MgO) с 1 га. Больше его выносят с урожаем картофель, сахарная свекла, табак, бобовые культуры. Магний входит в состав хлорофилла, участвует в передвижении фосфора в растениях и углеводном обмене, влияет на активность окислительно-восстановительных ферментов.

При недостатке магния снижается содержание хлорофилла в зеленых частях растений, наблюдается «мраморовидность» листьев вследствие развития хлороза между жилками. Листья желтеют, скручиваются и преждевременно опадают. Магний способен к реутилизации, и признаки его недостатка появляются сначала на старых листьях. Недостаток магния больше сказывается на урожае товарной продукции — зерна, клубней и корнеплодов.

Особенно бедны магнием песчаные и супесчаные почвы.

Под влиянием известкования резко повышается урожайность сельскохозяйственных культур. На основании многочисленных опытов установлено, что этот прием на кислых дерново-подзолистых почвах увеличивает урожайность ржи, яровой пшеницы и ячменя на 2—5 ц, озимой пшеницы на 3—7, клеверного сена на 8—15 и больше, сахарной, кормовой свеклы и капусты на 40—100, кукурузы (зеленая масса) на 50—70 ц на 1 га.

На известкованных почвах значительно возрастает эффективность минеральных и органических удобрений (табл. 18). Сильное действие наблюдается от совместного внесения извести и навоза.

Опыты показывают, что на кислых подзолистых почвах внесение извести и 10-20 т навоза в большинстве случаев дает такую же или более высокую прибавку урожайности сельскохозяйственных культур, как и двойная доза навоза (20-40 т на 1 га) на неизвесткованной почве.

Влияние известкования на эффективность удобрений (в среднем за 10 лет по данным Научно-исследовательского института земледелия центральных районов Нечерноземной зоны)

	Количество кормо- вых сдиниц		вых е	а кормо- диниц с 1 га)	ие при- счет ания 1. ед.	жтив- удоб- и из- ии, %	
Варианты опытов	тыс. с 1 га	%	без внесения иввести	при извест- при	Увеличение бавки за сч известнован (тыс. корм. с 1 га)	Рост эффе ностя от рений при весткован	
Без удобрений $N_{330}P_{240}K_{330}$ То же + 10 т извести То же + 10 т навоза То же + 20 т навоза + + 10 т извести	27,4 32,2 40,7 37,8 44,2	100 117 148 138 161	4,7 10,3		 8,6 6,5	64 38	

Примечание. Дозы извести и навоза даны на 1 га.

Положительное действие извести на урожайность при внесении полной дозы проявляется в течение 8—10 лет. За это время каждая тонна извести дает общую прибавку урожайности всех выращиваемых культур, равную в пересчете на зерно 12—15 ц на 1 га.

Известь медленно растворяется и взаимодействует с почвой, поэтому действие ее проявляется постепенно, эффект от известкования ежегодно возрастает и достигает максимума на второй-третий год.

Различные культуры неодинаково реагируют на известкование. Особенно отзывчивы свекла (сахарная, кормовая, столовая), конопля, кукуруза, подсолнечник, пшеница, ячмень, горох, кормовые бобы, клевер, люцерна, капуста, огурцы, лук. Эти культуры не выносят повышенной кислотности почвы.

Овес, рожь, гречиха, томаты могут переносить умеренную кислотность почвы, но хорошо отзываются на известкование. Картофель и лен менее чувствительны к кислотности, но и они хорошо реагируют на внесение извести на средне- и сильнокислых почвах. Однако внесение высоких доз извести под лен и картофель при ограниченных нормах удобрений может заметно ухудшать качество продукции. Лен заболевает бактериозом, картофель поражается паршой, в клубнях уменьшается содержание крахмала. В севооборотах с большим удельным весом картофеля и льна при использовании высоких доз удобрений, особенно калийных, известкование следует проводить полными дозами, при этом лучше вносить известковые материалы, содержащие магний, а также применять одновременно с известью борные удобрения. Люпин и сераделла хорошо переносят кислую реакцию почвы и при известковании повышенными дозами снижают урожай. При возделывании этих культур на зеленое удобрение рекомендуется вносить известь не перед посевом, а при запашке их в почву.

Известковые удобрения

Известковые удобрения получают размолом или обжитом плотных известковых пород (известняка, доломита, мела) или их добывают в виде рыхлых известковых пород.

Известняковая мука — основное промышленное известковое удобрение; получается при размоле или дроблении известняков. Они состоят в основном из карбоната кальция — CaCO₃, но чаще доломитизированы и содержат также MgCO₃ (до 10—15% в расчете на MgO). При большем содержании MgCO₃ порода называется доломитом. Чем больше в породе MgCO₃, тем она тверже.

Качество известковых удобрений оценивается по количеству нейтрализующих кислотность почвы соединений и по тонине помола. Промышленные известковые удобрения должны содержать не менее 85% CaCO₃ и MgCO₃. Чем тоньше помол известковых пород, тем более полно и быстрее будет нейтрализоваться кислотность почвы. Известняковая мука I класса должна иметь влажность до 1,5%, содержать не более 5% частиц диаметром свыше 1 мм и до 70% с диаметром менее 0,25 мм.

В 1975 г. производство известковых удобрений составило около 30 млн. т.

Большое значение для расширения выпуска известковых удобрений имеют рыхлые известковые породы, не требующие размола: известковые туфы, мергель, озерная известь, торфотуфы, природная доломитовая мука. Месторождения рыхлых известковых пород распространены во многих районах.

Известковый туф (ключевая известь) содержит от 90 до 98% ${\rm CaCO_3}$, является ценным известковым удобрением. Перед внесением иногда необходимо отсеивать более крупные твердые частицы. Месторождения известковых туфов чаще всего встречаются в пониженных элементах рельефа — притеррасных поймах, местах выхода ключей.

Мергель содержит от 25 до 75% CaCO₃. Встречается в виде рассыпчатой массы и плотной породы. Плотный мергель вывозят на поле зимой и складывают небольшими кучами. Под влиянием влаги и низкой температуры он разрыхляется, переходит в рассыпающуюся массу, которую можно вносить в почву.

Озерная известь (гажа) содержит 80—95% CaCO₃, залегает в местах усыхания замкнутых водоемов, почти целиком состоит из частиц менее 1 мм. Озерная известь — быстродействующее известковое упобрение.

Торфотуфы — низинный торф, богатый известью (от 10 до 50% CaCO₃). Они наиболее пригодны для известкования кислых почв, бедных органическим веществом и расположенных вблизи мест их залегания.

Природная доломитовая мука содержит, кроме CaCO₃, также MgCO₃ (95% и более в пересчете на CaCO₃). Это особенно ценное известковое удобрение для многих сельскохозяйственных культур. Известковые материалы, содержащие магний, более эффективны, чем

известковые удобрения, в которых нет этого элемента, особенно на песчаных и супесчаных почвах. При внесении их в почву устраняется или уменьшается вредное действие избытка извести на картофель и лен.

Пылевидная сланцевая зола содержат 60—75% CaCO₃. Ежегодно ее накапливается около 2 млн. т. Сланцевая зола широко используется в республиках Прибалтики и прилегающих областях РСФСР.

Металлургические шлаки могут быть использованы как известковое удобрение. Ежегодный их выход на заводах страны достигает 50 млн. т. В 1975 г. в сельском хозяйстве их использовалось менее 2 млн. т.

Дефекат — отход сахарного производства, в котором содержится не менее 50% CaCO₃, также используется как известковое удобрение.

Зола горючих сланцев, дефекат и металлургические шлаки, помимо извести, содержат небольшое количество некоторых питательных веществ и микроэлементы.

Гашеная известь (пушенка) — Са (ОН)₂ получается гашением жженой извести (СаО); быстродействующее известковое удобрение. В первые годы после внесения эффективнее других известковых материалов, особенно на тяжелых глинистых почвах.

Определение потребности почв в известковании и дозы извести

Прежде чем вносить известь на то или иное поле, следует определить степень кислотности почвы и нуждаемость ее в известковании, установить дозу извести в соответствии с особенностями почвы и возделываемых растений.

Необходимость известкования почвы можно установить по некоторым внешним признакам. Сильнокислые почвы обычно имеют белесый оттенок, ярко выраженный подзолистый горизонт, достигающий 10 см и более.

На повышенную кислотность почвы и нуждаемость ее в известковании указывает также плохой рост и сильное выпадение клевера и озимой пшеницы при перезимовке, обильное развитие специфических сорняков: щавелька, пикульника, белоуса, щучки, торицы

Таблица 19 Степень нуждаемости почв в известковании в зависимости от рН солевой вытяжки и степени насыщенности основаниями

Степень нуждаемости в известковании	рН солевой вытяжки	Степень насыщенности основаниями, %
Сильная	До 4,5	До 50
Средняя	4,6—5,0	50—70
Слабая	5,1—5,5	Более 70
Отсутствует	Более 5,5	Б о лее 80

полевой, лютика ползучего. Точнее степень нуждаемости почв в известковании можно определить по величине обменной кислотности (рН солевой вытяжки) и степени насыщенности почв основаниями (табл. 19). При установлении необходимости и очередности известкования важно учитывать свойства почвы и состав культур севооборота (табл. 20).

Таблица 20 Необходимость известкования в зависимости от свойств почв п состава культур севооборота

Потребность в известко-		и очередность известкован состава культур севообор			
вании в за- висимости от свойств почв	с большим процентом льна и картофеля	с малым процентом льна и картофеля, овощных и кормовых культур	в севооборотах с овощными и нормовыми культурами		
Сильная	Нуждаются (первая очередь)	Сильно нуждаются (первая очередь)	} Сильно нуждаются (первая очередь)		
Средняя	Слабо нуждаются (рторая очередь)	Нуждаются (вторая очередь)	Сильно нуждаются (первая очередь)		
Слабая	He нуждаются	Слабо нуждаются (третья очередь)	Нуждаются (вторая очередь)		
Отсутствует	» »	Не нуждаются	Слабо нуждаются (третья очередь)		

На основании результатов агрохимического обследования почвы зональные агрохимические лаборатории передают хозяйствам картограммы кислотности (рис. 4) и рекомендации по проведению известкования кислых почв.

Дозы извести определяются величиной кислотности и механическим составом почвы.

Всесоюзный институт удобрений и агропочвоведения рекомендует вносить в подзолистые почвы, содержащие не более 3% органического вещества, следующие дозы извести (табл. 21).

Таблица 21 Дозы извести (т ва 1 га) в зависимости от величины обменной кислотпости и механического состава почвы

	рН солевой вытяжки					
Почвы	4,5 и менее	4,6	4,8	5,0	5,2	5,4-5,5
Супесчаные и легкосугли- нистые Средне- и тяжелосуглини- стые	4,0 6,0	3,5 5,5	3,0 5,0	2,5 4,5	2,0 4,0	1,0—2,0 3,5—4,0

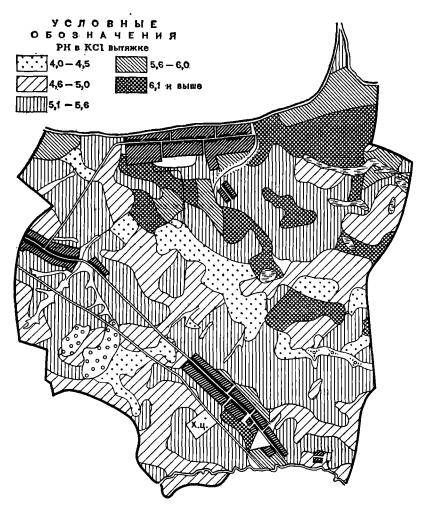


Рис. 4. Картограмма кислотности почвы полей хозяйства.

Более точно полную дозу извести можно установить по гидролптической кислотности. При расчете дозы извести величину гидролитической кислотности в миллиэквивалентах на 100 г почвы (H_z) умножают на коэффициент 1,5. Например, гидролитическая кислотность почвы равна 4 м.-экв. на 100 г почвы. Доза ${\rm CaCO_3}$ па 1 га будет $4\times \times 1,5=6$ т.

Дозу конкретных известковых удобрений вычисляют с учетом содержания в них суммы нейтрализующих кислотность веществ (в расчете на чистый CaCO₃) и количества влаги в удобрении.

Устанавливая дозу извести для конкретных условий, необходимо принимать во внимание механический состав почвы и особенности

культур севооборота. На тяжелых почвах и под культуры, очень чувствительные к повышенной кислотности (свекла, кукуруза, клевер, люцерна, капуста и др.), лучше вносить полную дозу извести, рассчитанную по гидролитической кислотности. На более легких малобуферных почвах дозу следует уменьшить на 1/3.

Сроки и способы внесения извести

Эффективность извести в большой степени зависит от правильного ее внесения в почву и тщательного переменивания с ней. Известь должна быть хорошо измельчена и перед заделкой равномерно рассеяна по поверхности почвы, что лучше всего достигается с помощью известновых сеялон и разбрасывателей. Пылевидные известновые удобрения - известняковая мука, сланцевая зола, цементная пыль и пылевидные отходы металлургической промышленности вносят цементовозами или другими машинами этого типа. Необходимо применять такой способ заделки извести, при котором обеспечивается хороптее перемешивание ее со всем пахотным слоем почвы. Полную, а также половинную дозу следует заделывать с осени под зяблевую вспашку или весной под перепашку зяби, лучше вместе с органическими удобрениями. Жженую и гашеную известь желательнее вносить раздельно от навоза, чтобы избежать потеръ аммиака. Фосфоритную муку лучше заделывать под вспашку зяби, а известь — под перепашку или культивацию. В Нечерноземной зоне в севооборотах с клевером местом первоочередного известкования является покровная культура, в пропашных севооборотах — кукуруза и корнеплоды, в овощных — капуста и свекла или их предшественники.

Известь можно вносить и зимой с последующей заделкой под весеннюю вспашку. Частичное известкование в зимний период снижает напряженность работ осенью, сокращает затраты на хранение извести и обеспечивает более равномерную загрузку техники. Во избежание смыва удобрений талыми водами вносить известь зимой можно лишь на выровненные площади с уклоном не более 5° и при скорости ветров не свыше 4 м в сек. При таких условиях эффективность зимнего внесения извести может не уступать осеннему и весеннему.

На естественных сенокосах и пастбищах известь вносят поверхностно. Она резко повышает продуктивность кормовых угодий, при этом не только возрастает урожайность, но и улучшается состав травостоя, кормовые достоинства сена и пастбищного корма. Известкование — одно из основных мероприятий при залужении и создании культурных пастбищ на кислых почвах. Известь заделывают под вспашку при проведении культуртехнических работ. Поскольку корневая система многих лугово-пастбищных трав развивается преимущественно в верхнем 10-сантиметровом слое почвы, допустимо внесение извести и под культивацию. При окультуривании лугов и пастбищ наряду с известью применяют фосфоритную муку, которую заделывают под вспашку, а известь — под культивацию.

Экономическая эффективность известкования

Эффективность известкования определяется величиной затрат на его проведение и стоимостью дополнительной продукции, получаемой от извести за все время ее действия. Основными экономическими по-казателями, характеризующими эффективность применения известковых удобрений, являются величина чистого дохода, рентабельность.

Себестоимость 1 т углекислого кальция в промышленных удобрениях 3—6 руб., в нестандартных — 3—8 руб. Затраты на применение известковых удобрений зависят от используемых материалов, дозы извести, вида и дальности перевозок, технологии хранения и внесения. Расходы на применение 1 т CaCO₃ при перевозке до 500 км по железной дороге и до 25 км автотранспортом в среднем составляют, по данным МСХ СССР, от 8,5 руб. для стандартной известковой муки до 10—16 руб. для нестандартных удобрений.

В структуре издержек на известкование до 80-90% затрат приходится на транспортировку, погрузочно-разгрузочные работы и внесение удобрений. При увеличении радиуса перевозок от 5 до 100 км затраты на применение извести возрастают в 2-2,5 раза. Использование пылевидной извести и новой технологии перевозки по схеме завод — минераловоз — поле (при радиусе перевозок до 120 км) или завод — железнодорожная цистерна — минераловоз — поле (при расстоянии свыше 120 км) позволяет снизить затраты на применение 1 т $CaCO_3$ до 5-8 руб. на 1 га.

Доставка пылевидной известняковой муки с завода-производителя или от железной дороги до поля и рассев ее осуществляются без перегрузки с помощью одного агрегата. Загрузка пылевидного удобрения из складов силосного типа в крытые железнодорожные вагоны, из них или непосредственно с завода в автоцементовозы производится с помощью пневматических устройств. Благодаря этому устраняются потери при транспортировке, погрузке и хранении, сокращается разрыв во времени между доставкой и внесением, обеспечивается высокое качество работ.

Известкование — радикальное средство повышения плодородия кислых почв и увеличения производства сельскохозяйственной продукции. Прибавки урожайности и экономическая эффективность этого приема могут широко колебаться в зависимости от степени кислотности почв, дозы извести и состава культур севооборота. Применение полной нормы извести экономически более эффективно, чем половинных доз.

Наибольший доход и окупаемость затрат обеспечиваются в севооборотах с наличием культур, сильно отзывающихся на известкование кислых почв.

От каждой тонны внесенной извести с учетом ее последействия получают не менее 6—7 ц корм. ед. с 1 га, и при стоимости прибавки урожая около 50 руб. каждый рубль, затраченный на известкование, дает 5—6 руб. дохода. На сильно- и среднекислых почвах затраты на

известкование окупаются стоимостью дополнительной продукции зерновых за 1,3 года, кормовых культур — менее чем за 1 год, а картофеля и овощей — в трех — пятикратном размере в течение года. На слабокислых почвах время окупаемости затрат увеличивается в 1,5 раза.

Результаты многолетних производственных опытов показывают, что каждая тонна извести на дерново-подзолистых почвах Нечерноземной зоны обеспечивает прибавку урожайности культур (в пересчете па зерно) не менее 9 ц на 1 га за ротацию севооборота при 12—13-кратной окупаемости затрат. Наряду с увеличением урожайности под влиянием известкования возрастает использование сельскохозяйственными культурами элементов питания из почвы и вносимых удобрений.

Известкование сильно- и среднекислых почв повышает эффективность минеральных удобрений на 35—50%, а слабокислых — на 15—20%. На известкованных почвах значительно увеличиваются и прибавки урожайности от применения органических удобрений.

ГИПСОВАНИЕ СОЛОНЦОВ

В нашей стране имеются значительные площади почв со щелочной реакцией. К таким почвам относятся солонцы и сильносолонцеватые почвы полупустынной и степной зон СССР. Особенно много солонцов в районах целинных и залежных земель. Щелочная реакция этих почв определяется наличием катионов натрия в почвенном поглощающем комплексе и соды в почвенном растворе.

В зависимости от количества поглощенного натрия почвы подразделяются на слабосолонцеватые, содержащие 5—10% Na от общей емкости поглощения, солонцеватые — 10—20% Na и солонцы — более 20% Na.

Солонцы в зависимости от глубины расположения солонцового горизонта делят на корковые — солонцовый горизонт залегает на глубине не более 7 см, среднестолбчатые — на глубине 8—15 см и глубокостолбчатые — на глубине более 15 см.

Солонцы и солонцеватые почвы характеризуются плохими физическими свойствами: во влажном состоянии набухают и заплывают, а при высыхании твердеют, образуют корку и растрескиваются на глыбы; обработка их сильно затруднена. Щелочная реакция солонцовых почв вредна для культурных растений. Плотный солонцовый горизонт препятствует проникновению вглубь корневой системы. Урожайность сельскохозяйственных культур на таких почвах очень низкая.

Для коренного улучшения солонцов и солонцеватых почв, содержащих более 10% Na от общей емкости поглощения, необходимо гипсование.

При внесении в почву гипса устраняется сода в почвенном растворе, а поглощенный почвой натрий вытесняется и заменяется

кальцием с образованием в растворе нейтральной соли — сульфата натрия:

$$\begin{split} \text{Na}_2\text{CO}_3 + \text{CaSO}_4 &= \text{CaCO}_3 + \text{Na}_2\text{SO}_4. \\ (\Pi\Pi\text{H}) \frac{\text{Na}}{\text{Na}} + \text{CaSO}_4 &= (\Pi\Pi\text{H})\text{Ca} + \text{Na}_2\text{SO}_4. \end{split}$$

При образовании в растворе небольшого количества Na₂SO₄ он не оказывает вредного действия на растения, но при гипсовании солонцов, содержащих более 20% Na от емкости поглощения, в растворе появляется много сульфата натрия, и его необходимо удалять из почвы промыванием. В результате гипсования устраняется щелочная реакция солонцовых почв, улучшаются физические, физико-химические и биологические свойства почвы, повышается ее плодородие.

Для гипсования могут быть использованы следующие материалы. Гипс сыромолотый—CaSO₄·2H₂O — тонкоразмолотый серый или белый порошок, содержит 71—73% CaSO₄.

Фосфогиис — отход туковых заводов, очень тонкий порошок, содержит 70—75% $CaSO_4$ и 2—3% P_2O_5 .

Глиногипс добывается из природных залежей, в естественном виде рыхлый, не требует размола, содержит от 63 до 92% CaSO₄ и от 1 до 19% глины.

Доза гипса в зависимости от количества поглощенного натрия и щелочности почвы может быть от 3 до 10 т на 1 га. Для расчета доз гипса можно пользоваться формулой:

$$CaSO_4 \cdot 2H_2O$$
 (B T Ha 1 ra) = $(Na - 0.01T) \cdot 0.086H_nd_c$,

где 0,086 — 1 м.-экв. CaSO₄·2H₂O, в г;

Nа — содержание поглощенного натрия в м.-экв. на 100 г почвы;

 $0.01\ T-10\%$ Na от емкости поглощения (допустимое содержание поглощенного натрия в почве);

 H_n — глубина пахотного слоя в см;

 d_c — объемная масса почвы гипсуемого слоя.

При орошении доза гипса может быть уменьшена на 25-30%. Полную дозу его можно вносить в несколько приемов в течение 2-3 лет.

На корковых солонцах гипс вносят после вспашки и заделывают культиватором. На глубокостолбчатых солонцах при залегании солонцового горизонта на глубине более 15 см всю дозу гипса рассевают и заделывают плугом с предплужником. При расположении солонцового горизонта на глубине 7—15 см гипс можно вносить под вспашку или культивацию, а также в два приема — по половине дозы под каждую из этих обработок почвы.

По данным опытов, гипсование без орошения в Черноземной зоне повышает урожайность зерновых в среднем на 3—6 ц, в зоне каштановых почв — на 2—3 ц на 1 га. При орошении эффективность гипсования еще выше. Значительно возрастает действие гипса при заделке его под глубокую перепашку с одновременным внесением навоза,

компостов, применением зеленого удобрения. При гипсовании возрастает эффективность как органического, так и минеральных удобрений (табл. 22).

Если под солонцовым горизонтом на небольшой глубине залегает слой, богатый $CaCO_3$ или $CaSO_4$, то можно проводить глубокую мелиоративную вспашку, при которой этот слой выворачивается и перемещивается с солонцовым слоем.

Таблица 22 Действие гипса в сочетании с внесением навоза и минеральных удобрений на урожайность яровой пшеницы (данные Спбирского научно-псследовательского института сельского хозяйства)

	Среднест соло	олбча тые нцы	Глубокостол бчатые солонцы		
Вариант оцыта	урожайность (ц с 1 га)	прибавка урожайно- сти (ц на 1 га)	урожайность (ц о 1 га)	прибавка урожайно- сти (ц на 1 га)	
Контроль Гипс 5 т + N ₆₀ P ₆₀ Гипс 5 т + навоз 40 т Гипс 10 т + навоз 40 т	1,7 9,5 15,4 12,1	7,8 13,7 10,4	4,5 12,6 16,2 18,6	8,1 11,7 14,1	

Этот прием называется самогипсованием солонцов. После внесения гипса или мелиоративной вспашки на неорошаемых площадях необходимо снегозадержание, а при орошении желателен полив.

Положительное влияние гипсования на плодородие почвы наблюдается в течение 8—10 лет. Причем вследствие постепенного взаимодействия гипса с почвой действие его из года в год возрастает.

Гипсование проводят не только для химической мелиорации солонцов, но и с целью улучшения питания растений кальцием и серой на других почвах, прежде всего в Нечерноземной зоне.

Сера имеет важное значение в жизни растений. Основное количество ее в растениях находится в составе белков, а также других органических соединений — витаминов, ферментов, горчичных и чесночных растительных масел. Сера участвует в азотном и углеводном обмене растений, а также в процессе дыхания.

Наиболее богаты серой бобовые и культуры семейства капустные. Распределение серы по органам растений неодинаково. Семена и листья, особенно молодые, богаче этим элементом, чем стебли и корни.

Вынос серы с урожаем зерновых культур и картофеля составляет 7—15 кг, зернобобовых и сахарной свеклы—20—30, турнепса, капусты, бобовых трав (клевера и люцерны)—40—70 кг с 1 га.

При недостатке серы листья у растений приобретают светлую желтоватую окраску, рост и развитие растений ухудшаются.

Источниками серы служат различные соли серной кислоты в почве, из которых она поглощается корнями растений в виде аниона

 SO_4^{2-} , а также сернистый газ из атмосферы, усваиваемый через листья. Поглощенная сера восстанавливается в тканях растений и входит в состав белков и других органических соединений.

Преобладающая часть серы (70-90%) в почве находится в недоступной для растений органической форме. Особенно бедны серой легкие (песчаные и супесчаные) почвы Нечерноземной зоны. При разложении органических веществ сера в них окисляется специфическими серобактериями до SO₄-. Количество доступных для растений минеральных соединений серы в почвах обычно невелико, и представлены они в основном гипсом. Потребность растений в сере в значительной степени удовлетворяется и за счет SO, атмосферы, особенно в районах с развитой промышленностью, а также серы, содержащейся в органических и минеральных удобрениях (сульфате аммония, простом суперфосфате). Однако потребность в сере и необходимость дополнительного ее внесения в почву возрастают по мере увеличения урожайности. Пополнение же запасов серы в почве сокращается из-за постоянного роста производства высококонцентрированных комплексных «безбалластных» минеральных удобрений и осуществления мер по снижению загрязнения среды (в том числе SO2) промышленными предприятиями.

Гипс содержит кальций и серу, поэтому как удобрение применяется прежде всего под бобовые травы — клевер и люцерну. Вносят его на травах поверхностно, под другие культуры — в почву в дозе 3—4 ц на 1 га. Положительное действие гипса на рост, развитие и урожайность растений на кислых почвах обусловлено улучшением питания кальцием и серой, повышением устойчивости растений к кислотности при увеличении концентрации кальция в почвенном растворе, улучшением доступности калия. Прибавки урожая клеверного сена от внесепия гипса на дерново-подзолистых почвах составляют 7—10 ц, на серых лесных почвах и выщелоченных черноземах до 6—7 ц на 1 га.

МИНЕРАЛЬНЫЕ УДОБРЕНИЯ

Под названием «удобрения» объединяют разнообразные минеральные и органические вещества и материалы, которые содержат необходимые для растений элементы питания, усиливают мобилизацию питательных веществ из почвенных запасов и улучшают свойства почвы. По характеру действия различают удобрения прямые и косвенные.

Удобрения прямого действия оказывают непосредственное положительное влияние на питание растений. При внесении аммиачной селитры $\mathrm{NH_4NO_3}$ улучшается азотное питание растений, при применении суперфосфата — $\mathrm{Ca}\,(\mathrm{H_2PO_4})_2$ — фосфорное питание. Косвенные удобрения применяют главным образом

Косвенные удобрения применяют главным образом для улучшения свойств почвы, изменения реакции почвенного раствора и усиления мобилизации запасов питательных веществ в почве, т. е. они оказывают косвенное воздействие на условия питания растений. К косвенным удобрениям относятся, например, известковые и гипс.

В зависимости от происхождения, способа и места получения удобрения могут быть промышленные и местные.

К промышленным относятся почти все минеральные удобрения, которые получаются размолом или химической переработкой агроруд на специальных химических, туковых заводах, а также продукты синтетической азотной промышленности и отходы металлургической и других видов промышленности.

Местные удобрения получаются на местах их использования, в самих хозяйствах или вблизи от них. К ним относятся навоз, навозная жижа, птичий помет, фекалии, компосты, торф, прудовый ил, зола, известковые туфы, зеленое удобрение.

По химическому составу все удобрения разделяют на минеральные и органические.

Минеральные удобрения содержат питательные вещества в виде различных минеральных солей. В зависимости от того, какие питательные элементы содержатся в них, удобрения подразделяют на простые и комплексные.

Простые (односторонние) удобрения содержат один какой-либо элемент питания. К ним относятся: азотные, фосфорные, калийные удобрения и микроудобрения.

Комплексные, или сложные (многосторонние), удобрения содержат одновременно два или более основных питательных элементов (табл. 23).

Таблица 23 Ассортимент минеральных удобрений в СССР (% от валового производства) (Борисов В. М., 1976)

Виды удобрений	Процент действующе- го вещества	1970 г.	1975 r.	1980 г. (план)				
Азотные								
Аммиачная селитра Мочевина Сульфат аммония Аммиачная вода Жидкий аммиак Сложные Прочие	35 46 20—21 16—20 82	45,0 27,3 7,3 14,4 5,0 1,0	44,7 25,9 6,8 } 10,9 10,7 1,0	40,1 27,1 5,1 7,1 19,3 1,3				
	Фосфорни	er e						
Односторонн ие	<u> </u>	86,6	55,7	36,0				
в том числе: суперфосфат простой суперфосфат двойной фосфатшлаки Сложные	20 45 8—20	63,6 21,3 1,7 11,2	39,5 15,2 1,0 36,5	16,0 19,5 0,5 54,5				
в том числе: аммофос витроаммофоска нитрофоска нитрофос нитроаммофос жидкие комплексные Кормовые фосфаты		3,5 1,5 1,9 3,1 1,1 0,1 2,2	26,4 2,4 1,6 2,8 3,2 7,8	27,2 11,9 4,0 2,1 1,1 7,7 9,7				
	Калийнь	I 0						
Хлористый калий Калийная соль Сульфат калия Калимагнезия Калийно-магнезиальный кон- центрат Электролит Каинит Сложные	52—60 40 45—52 26—28 — 32 8—12 —	57,7 27,9 1,9 1,7 2,4 5,7 2,7	83,3 5,4 1,4 1,2 1,4 1,6 4,5	77,5 4,1 1,5 1,4 0,7 14,8				

Содержание действующего вещества в удобрениях выражается в весовых процентах; в азотных удобрениях — в расчете на N, в фосфорных — на P_2O_5 и калийных — на K_2O . В условных стандартных туках приняты содержания: N=20,5%, $P_2O_5=18,7\%$, $K_2O=41,6\%$.

Для пересчета дозы удобрения в килограммах действующего вещества на физические удобрения или условные стандартные туки указываемую дозу N, P_2O_5 и K_2O делят на процент действующего вещества в соответствующих удобрениях. Например, доза 70 кг N на 1 га будет составлять $\frac{70}{20.5}=3.5$ ц в условных стандартных туках либо $\frac{70}{34.5}=2$ ц на 1 га аммиачной селитры с содержанием азота 34.5%.

АЗОТНЫЕ УДОБРЕНИЯ

Значение азота для растений, содержание и превращение его в почве

Азоту принадлежит ведущая роль в повышении урожая сельскохозяйственных культур. Д. Н. Прянишников подчеркивал, что главным условием, определяющим среднюю высоту урожая в разные эпохи, была степень обеспеченности сельскохозяйственных растений азотом.

Тромадное значение азотных удобрений в увеличении урожайности сельскохозяйственных культур обусловливается исключительно важной ролью азота в жизни растений! Азот входит в состав белков являющихся главной составной частью цитоплазмы и ядра клеток, в состав нуклеиновых кислот, хлорофилла, ферментов, фосфатидов, большинства витаминов и других органических азотистых соединений, которые играют важную роль в процессах обмена веществ в растении:

О

Основным источником азота для растений являются соли азотной кислоты и соли аммония. В естественных условиях питание растений азотом происходит путем поглощения ими из почвенного раствора аниона NO_3^- и катиона NH_4^+ , находящегося в почвенном растворе и в обменно-поглощенном состоянии. Поступившие в растения минеральные формы азота проходят сложный илкл превращения, в конечном итоге включаясь в состав органических азотистых соединений — аминокислот, амидов и, наконец, белка. Синтез органических азотистых соединений происходит через аммиак, образованием его завершается и их распады Аммиак, по крылатому выражению Д. Н. Прянишникова, «есть альфа и омега в обмене азотистых веществ у растений».

Нитратный азот не может непосредственно использоваться растениями в синтетических процессах.

Нитраты, поступившие в растения, подвергаются ступенчатому — через нитрит, гипонитрит и гидроксиламин — ферментативному восстановлению до аммиака:

$$HNO_3 \longrightarrow HNO_2 \longrightarrow (HNO)_2 \longrightarrow NH_2OH \longrightarrow NH_3$$
.

нитрат нитрит гипонитрит гидроксиламин аммиак

Биологическая редукция нитратов происходит с участием ферментов, содержащих микроэлементы молибден, медь, железо и марганец, и требует затраты энергии, аккумулируемой в растениях при фотосин-

тезе и окислении углеводов. Восстановление нитратов в растениях осуществляется по мере использования образующегося аммиака на синтез органических азотистых соединений. Питраты безвредны для растений и могут накапливаться в их тканях в значительных количествах. Однако содержание нитратов в сельскохозяйственной продукции свыше определенного предела может оказывать токсическое действие на организм животных и человека:

Основной путь образования аминокислот, находящихся в растениях частично в свободном состоянии и главным образом в составе белка,— аминирование органических кетокислот— продуктов неполного окисления углеводов.

Аммиачный азот, поступивший в растение и образовавшийся при восстановлении нитратов, в первую очередь присоединяется к щавелевоуксусной, кетоглутаровой и фумаровым кислотам, образуя аспарагиновую и глутаминовую аминокислоты.

СООНСОСН
$$_2$$
СООН $\xrightarrow{+NH_3+H_2}$ СООНСН $_2$ СН $_2$ СООН.
щавелевоуксусная кислота аспарагиновая кислота
СООНСОСН $_2$ СН $_2$ СООН $\xrightarrow{+NH_3+H_2}$ СООНСН $_2$ СН $_2$ СООН.
кетоглутаровая кислота глутаминовая кислота
СООНСН = СНСООН $\xrightarrow{+NH_3}$ СООНСН $_2$ СН $_2$ СООН.
фумаровая кислота аспарагиновая кислота

Широкий набор аминокислот, входящих в состав белка, синтезируется переаминированием аспарагиновой и глутаминовой кислот и их абилов — аспарагина и глутамина, а также в результате ряда других специфических реакций. В процессе переаминирования под воздействием соответствующих ферментов — аминотрансфераз — аминогруппы указанных соединений переносятся на другие кетокислоты.

СООНСН
$$_2$$
СНNН $_2$ СООН + СН $_3$ СОСООН \longrightarrow СООНСН $_2$ СОСООН + аспарагиновая кислота пировиноградная щавелевоуксусная кислота кислота + CH $_3$ CHNН $_2$ СООН.

СООНСН $_2$ СН $_2$ СНNН $_2$ СООН + СН $_3$ СОСООН - глутаминовая кислота пировиноградная кислота - СООНСН $_2$ СН $_2$ СОСООН + СН $_3$ СНNН $_2$ СООН. кетоглутаровая кислота аланин

Важную роль в метаболизме азота и углеводном обмене растений играют реакции дезаминирования аминокислот, т. е. отщепление аминогруппы от аминокислот с образованием аммиака и соответствующей кетокислоты. Аммиак вновь используется для аминирования кетокислот, а высвободившаяся кетокислота включается в цикл

превращения углеводов.

СООНСН
$$_2$$
СН N Н $_2$ СООН $\frac{+H_2O}{-H_2}$ СООНСН $_2$ СОСООН $+$ N Н $_3$. аспарагиновая кислота щавелевоуксусная кислота СН $_3$ СН N Н $_2$ СООН $\frac{+H_2O}{-H_2}$ СН $_3$ СОСООН $+$ N Н $_3$. аланин пировиноградная кислота

Особое значение в азотном обмене растений принадлежит амидам — аспарагину и глутамину, образующимся при присоединении еще одной молекулы аммиака к аспарагиновой и глутаминовой кислотам.

СООНСН
$$_2$$
СН $_2$ СООН $\xrightarrow{+NH_3}$ СО $_3$ Н $_2$ СН $_2$ СН $_4$ СН $_4$ СООН. аспарагиновая кислота амед аспарагиновой кислоты (аспарагин) СООНСН $_2$ СН $_2$ СН $_3$ СООН $\xrightarrow{+NH_3}$ СООН $_4$ СН $_2$ СН $_4$ СН $_4$ СООН глутаминовая кислота амид глутаминовой кислоты (глутамин)

Классическими исследованиями Д. Н. Прянишникова установлено, что в результате образования амидов происходит обезвреживание аммиака, накапливающегося в растениях при дезаминировании аминокислот или при обильном аммиачном питании при недостатке в растениях углеводов.

При недостатке углеводов и, следовательно, органических кетокислот (особенно при прорастании семян, имеющих малый запас углеводов, например, сахарной свеклы) избыточное поступление аммиачного азота в растения может оказать отрицательное действие. В этом случае аммиачный азот не успевает использоваться на синтез аминокислот и накапливается в тканях, вызывая «аммиачное отравление» растений. Те растения, в посевном материале которых содержится много углеводов (например, крахмала у картофеля), быстро усваивают поступающий аммиачный азот и хорошо отзываются на внесение аммиачных удобрений.

Биосинтез белка, состоящего из аминокислот, соединенных между собой пептидными связями, происходит с участием нуклеиновых кислот, являющихся матрицей, на которой фиксируются и соединяются аминокислоты с образованием разнообразных белковых молекул.

В процессе роста и развития в растениях постоянно синтезируется огромное количество разнообразных белков. Они различаются по молекулярной массе, составу аминокислот и их последовательности в полипептидных цепях, по функциональным свойствам. Белки, синтезируемые на различных фазах развития растений, как и белки отдель-

ных органов и клето к, имеют качественные отличия. Для биосинтеза белков, как и других сложных органических соединений, требуется затрата большого количества энергии. Основные источники ее в растениях — фотосинтез и дыхание (окислительное фосфорилирование), поэтому существует тесная связь между синтезом белка и интенсивностью дыхания и фотосинтеза.

Наряду с синтезом в растениях происходит распад белков на аминокислоты с отщеплением аммиака под действием протеолитических ферментов. В молодых растущих органах и растениях синтез белков превышает распад, по мере старения процессы расщепления активизируются и начинают преобладать над синтезом.

В разные фазы роста и развития растений ход процессов обмена азотистых веществ неодинаков. При прорастании семян происходит расшепление запасных белков эндосперма или семядолей, и продукты гидролиза используются для построения белков. После формирования фотосинтезирующего листового аппарата питание растений и синтез белка осуществляются за счет экзогенного минерального азота. Наиболее интенсивно поглощение и усвоение растениями азота из окружающей среды происходит в период максимального роста и образования вегетативных органов — стеблей и листьев. Из устаревших частей растений, в которых преобладают процессы распада белка, продукты его гидролиза передвигаются в молодые интенсивно растущие органы. При формировании семян белковые вещества вегетативных частей растения подвергаются гидролизу и образующиеся продукты оттекают в репродуктивные органы, где снова используются на синтез белка. В это время потребление растениями азота из почвы ограничивается или практически заканчивается.

Работами Д. Н. Прянишникова и его учеников доказано, что аммонийный и нитратный азот при определенных условиях — равнопенные источники питания для растений. Преимущественное использование растениями аммонийного или нитратного азота зависит от ряда факторов, важнейшими из которых являются: биологические особенности культуры, обеспеченность углеводами, реакция среды, наличие кальция, калия и других элементов питания, в том числе микроэлементов. При нейтральной реакции аммонийный азот усванвается растениями лучше, а при кислой — хуже, чем нитратный. Повышенное содержание кальция, магния и калия создает более благоприятные условия для усвоения аммонийного азота, а при нитратном питании важное значение имеет достаточный уровень фосфорного питания. Недостаток молибдена тормозит восстановление нитратов и ограничивает ассимпляцию нитратного азота растениями. В естественных условиях сравнительная ценность для растений нитратных и аммиачных (аммонийных) форм азотных удобрений в значительной степени определяется их поведением и превращениями в почве и се свойствами.

√ Условия азотного питания оказывают большое влияние на рост и развитие растений. При достаточном снабжении растений азотом в них усиливается синтез органических азотистых веществ. Растения образуют мощные листья и стебли с интенсивно зеленой окраской, хорошо растут и кустятся; улучшается формирование и развитие органов плодоношения. В результате резко повышается урожай и и содержание белка в нем.

При одностороннем избытке азота задерживается созревание растений, они образуют большую вегстативную массу, но мало зерна или клубней и корнеплодов; у зерновых и льна избыток азота может вызывать полегание.

При недостатке азота рост растений резко замедляется, листья бывают мелкие, бледно-зеленой окраски, что связано с нарушением синтеза хлорофилла, преждевременно желтеют, стебли становятся тонкими и слабо ветвятся. Ухудшается также формирование и развитие репродуктивных органов и налив зерна, сильно снижаются урожай и содержание белка в нем.

Содержание азота в растениях. Основное количество азота находится в семенах (до 90% общего содержания) в составе белка. Растительные белки содержат азота от 14 до 18%, в среднем около 16%.

Качество сельскохозяйственной продукции часто оценивается по показателю «сырой протеин», под которым понимается сумма азотистых соединений в растении, подавляющая доля которых приходится на белок. Количество сырого протеина рассчитывается умножением общего содержания азота в растениях на коэффициент 6,25.

Наиболее богаты азотом семена бобовых и масличных культур, меньше его в аерне злаков (см. табл. 6). В вегетативных органах растений азота значительно меньше, чем в семенах. Так, в зерне ишеницы содержание азота составляет от 2,3 до 3,5% сухого вещества, а в соломе — от 0,4 до 0,7%. Из вегетативных органов азотом богаче листья, особенно молодые, меньше его в стеблях и корнях. В листьях и стеблях растений, а также в корнеплодах и клубнях доля небелкового азота может быть весьма значительной. Например, в листовых овощах, корнях сахарной, кормовой свеклы и моркови, клубнях картофеля небелковые соединения азота в момент достижения товарной спелости составляют половину общего количества этого элемента. Растения потребляют из почвы значительное количество азота: зерновые около 100 кг, кукуруза, картофель, сахарная свекла до 150—200 кг с 1 га. — У 200 кг с 1 га. — У 200 кг с 1 га. — У 3 семента.

200 кг с 1 га. / 3 ССОЛ Содержание азота в почвах зависит от количества в них гумуса. В черноземах общее содержание азота достигает 0,4—0,5%, а в дерново-подзолистых почвах и сероземах — только 0,05—0,15%. Общий запас азота в пахотном слое разных почв колеблется от 1500 до 15 000 кг на 1 га.

Основная масса почвенного азота (до 99%) находится в виде органических соединений (белковых и гумусовых веществ), недоступных для питания растений. Скорость минерализации органических соединений азота почвенными микроорганизмами до аммиака и питратов зависит от условий аэрации, влажности, температуры и реакцип поч-

вы. Поэтому количество минеральных соединений азота в почвах сильно колеблется — от следов до 2-3% общего содержания азота.

Разложение азотистых органических веществ в почве в общем виде может быть представлено схемой: гуминовые вещества, белки \rightarrow аминокислоты, амиды \rightarrow аммиак \rightarrow нитриты \rightarrow нитраты \rightarrow молекулярный азот.

Распад органических азотсодержащих веществ почвы до аммиака называется аммонификацией. Этот процесс осуществляется многочисленными аэробными и анаэробными почвенными микроорганизмами и происходит во всех почвах при разной реакции среды, но замедляется в анаэробных условиях и при сильнокислой и щелочной реакции.

Аммиачный азот в почве подвергается нитрификации — окислемию до нитритов, а затем нитратов. Этот процесс осуществляется группой специфических аэробных бактерий, для которых окисление аммиака является источником энергии. Оптимальные условия для нитрификации — хорошая аэрация, влажность почвы 60—70% капиллярной влагоемкости, температура 25—32°С и близкая к нейтральной реакция. Интенсивность нитрификации — один из признаков культурного состояния почвы, а ее нитрификационная способность в определенной мере характеризует степень эффективного плодородия почвы.

На кислых подзолистых появах в условиях плохой аэрации, избыточной влажности и низкой температуры процессы минерализации протекают слабо и останавлинаются на стадии образования аммиака. Нитрификация вследствие неблагоприятных условий для деятельности нитрифицирующих бактерий бывает подавлена и происходит медленно.

На окультуренных, хорошо обработанных почвах процессы аммонификации и нитрификации идут более интенсивно, больше образуется минеральных соединений азота, особенно нитратов. Известкование кислых почв, систематическое внесение органических и минеральных удобрений, усиливая микробиологическую деятельность в почве, резко повышают интенсивность минерализации органического вещества и образования усвояемых соединений азота.

Минеральные соединения азота не накапливаются в почве в больших количествах, так как потребляются растениями, а также используются микроорганизмами и частично снова превращаются в органическую форму.

Азотные удобрения усиливают минерализацию почвенного органического вещества и значительно увеличивают усвоение растениями азота из почвы. До недавнего времени считалось, что растения используют 70—80% азота удобрений. Коэффициент использования растениями азота удобрений определялся по разнице в выносе азота с урожаем при внесении азота и без внесения. При этом допускалось, что растения в том и другом случае усваивают одинаковое количество азота из почвы. Применение в агрохимических исследованиях метода меченых атомов (в опытах использовали соединения азота, меченые стабильным изотопом азота 15N) позволило установить, что в полевых

условиях растения усваивают непосредственно из удобрений лишь $30-50\,\%$ азота. Коэффициенты использования азота различных форм азотных удобрений существенно не различаются, за исключением экстремальных условий их применения. Различия в размерах использования азота удобрений, определяемых разностным методом и реальным его усвоением, характеризуют дополнительное усвоение азота почвы при внесении азотных удобрений. Показано также, что $10-20\,\%$ азота нитратных и $30-40\,\%$ аммиачных удобрений и мочевины закрепляется в почве в органической форме. Превращение азота в органическую форму резко возрастает при запашке в почву органического вещества с низким содержанием азота (пожнивные растительные остатки, солома злаковых и соломистый навоз). Закрепившийся азот медленно минерализуется и последействие азотных удобрений незначительно.

Следовательно, одновременно с минерализацией органического вещества в почве происходит закрепление минеральных соединений азота вновь в органическую форму. Но при этом азот не теряется, а лишь временно переходит в недоступные растениям соединения. Соотношение процессов минерализации и новообразования органических азотсодержащих веществ имеет важное значение в азотном режиме почв.

Для закрепления нитратного азота в почве особое значение, как уже отмечалось, имеет биологическое поглощение. Все соли азотной кислоты растворимы в воде, нитраты легко передвигаются в почве и могут вымываться из корнеобитаемого слоя осадками и дренажными водами. Вымывание нитратов из тяжелых почв под растениями обычно незначительно. Однако из легких, особенно парующих, почв в увлажненных районах, а также в условиях орошаемого земледелия такие потери могут достигать значительных величин.

Потери азота почвы и удобрений происходят в основном вследствие денитрификации — процесса восстановления нитратного азота до свободного молекулярного азота (N2) или до газообразных окиси и закиси азота (NO и N₂O). Биологическая денитрификация осуществляется группой денитрифицирующих бактерий и особенно интенсивно идет в анаэробных условиях и щелочной реакции почвы при наличии богатого клетчаткой органического вещества. Биологическая денитрификация протекает и в обычных условиях реакции среды, аэрации и увлажнения, поскольку в почвах неизбежны анаэробные микрозоны, а диапазон благоприятной реакции для развития денитрификаторов довольно широкий. Косвенная, или «хемоденитрификация», связана с образованием газообразных окислов азота и молекулярного азота при химическом взаимодействии промежуточных продуктов нитрификации между собой и с органическим веществом почвы, а также разложении азотистой кислоты (особенно при кислой реакции). Потери азота при денитрификации нитратов, образующихся при нитрификации аммиачного азота почвы и вносимых аммиачных азотных удобрений и мочевины, а также из нитратных азотных удобрений, весьма существенны. Исследования с применением 15N показали,

что потери азота аммиачных удобрений составляют 10-20%, а нитратных — 15-30% от внесенного количества. Потери азота удобрений резко возрастают в парующей почве и достигают 40-50%.

Следовательно, в круговороте азота в земледелии процессы нитрификации наряду с положительной играют и отрицательную роль, так как образующиеся нитраты могут вымываться и теряться из почвы в виде газообразных продуктов при денитрификации. Один из путей снижения потерь азота почвы и удобрения вследствие денитрификации и вымывания нитратов — применение ингибиторов нитрификации. Эти препараты тормозят нитрификацию и сохраняют минеральный азот почвы и удобрений в аммонийной форме. Особенно эффективно использование ингибиторов нитрификации в районах орошаемого земледелия под хлопчатник и на рисовых плантациях, а также на легких почвах в зоне достаточного увлажнения.

При поверхностном внесении твердых аммонийных удобрений и мочевины происходяй потери азота в форме аммиака, особенно на карбонатных и щелочных почвах. Даже неглубокая заделка удобрений практически устраниет такие потери.

Потери азота значительно ограничиваются при правильном применении органических и минеральных удобрений в сочетании с рациональной системой обработки почвы и орошения.

Азот, усвоенный растениями, лишь частично снова возвращается в почву с навозом, та же часть азота, которая содержится в товарной продукции (зерно, волокно льна, клубни картофеля и т. д.), отчуждается из хозяйства.

Чтобы получать высокие, устойчивые урожаи сельскохозяйственных культур, необходимо постоянно заботиться о пополнении запасов азота в почве.

У Единственным естественным источником пополнения запасов азота в почве является азот атмосферы.

В атмосфере над каждым гектаром почвы находится около 80 тыс. т азота, но молекулярный азот воздуха недоступен для большинства растений в природных условиях.

Связывание молекулярного азота воздуха и пополнение запасов азота в почве происходит двумя путями. Небольшое количество связанного азота (до 3—5 кг на 1 га) образуется в атмосфере под действием грозовых разрядов и в виде азотистой и азотной кислоты поступает в почву с осадками. Большее значение для питания растений имеет фиксация азота воздуха азотфиксирующими микроорганизмами, свободно живущими в почве (азотобактер, клостридиум и др.), и клубеньковыми бактериями, живущими в симбиозе с бобовыми растениями (биологический синтез азота).

Свободноживущие азотфиксаторы ассимилируют до 5 кг азота на 1 га. Размеры симбиотической азотфиксации зависят от вида бобового растения. Так, клевер может накапливать 150—160 кг азота, люпин — 100—170 кг, люцерна — 250—300 кг, соя — 100 кг, горох, вика и фасоль — 70—80 кг на 1 га. Примерно ¹/₃ связанного бобовыми азота остается в пожнивных и корневых остатках и после минерали-

зации может использоваться культурами, следующими в севообороте после бобовых.

Для получения высокого урожая сельскохозяйственных культур громадное значение имеет внесение в почву минеральных азотных удобрений, получаемых путем синтеза из азота воздуха па химических заводах. На большинстве почв Советского Союза и особенно на дерново-подзолистых и серых лесных, сероземах и выщелоченных черноземах азотные удобрения имеют решающее значение в повышении урожаев. Они дают наибольшие прибавки урожайности (табл. 24).

Таблица 24 Действие минеральных удобрений на урожайность картофеля (данные ВИУА)

Почвы	Число опытов	Урожай- ность без навоза и минераль- ных удоб- рений (ц с 1 га)	Прибавка (ц на 1 га) от удобрения			
			полного мине- рального	азот- ного	фосфор- кого	калий - ного
Подзолистые супесчаные Подзолистые суглини- стые	23 8	117 154	60 69	35 39	13 18	16 28
Серые лесные Выщелоченные чернозе- мы	6 10	159 203	73 56	43 31	10 20	9 13

Азотные удобрения применяют под все культуры, за исключением бобовых, потребность которых в азоте обеспечивается за счет фиксации азота воздуха клубеньковыми бактериями. До 1964 г. основное количество азотных удобрений применялось под важнейшие технические культуры: хлопчатник, сахарную свеклу, лен, коноплю, чай.

Быстрое увеличение производства азотных удобрений в последующие годы позволило применять их не только под технические, но и на больших площадях под зерновые и кормовые культуры.

Главное место в ассортименте выпускаемых в нашей стране азотных удобрений принадлежит аммиачной селитре и мочевине (72% общего производства азотных удобрений). В 1980 г. в ассортименте азотных удобрений будут преобладать более концентрированные формы: мочевина, аммиачная селитра, безводный аммиак и сложные удобрения, доля низкопроцентных удобрений будет незначительной.

Азотные удобрения подразделяются на четыре группы:

Нитратные удобрения (селитры), содержащие азот в нитратной форме, —NaNO₃, Ca(NO₃)₂.

Аммонийные и аммиачные удобрения, содержащие азот соответственно в аммонийной и аммиачной форме,— (NH₄)₂SO₄, NH₄Cl и жидкие азотные удобрения.

Аммонийно-нитратные удобрения, содержащие азот в аммонийной и нитратной форме, — NH_4NO_3 .

Удобрение, содержащее азот вамидной форме,— СО (NH₂)₂.

Производство различных азотных удобрений основано главным образом на получении синтетического аммиака из молекулярного азота и водорода. Азот получают пропусканием воздуха в генератор с горящим коксом, а источником водорода служат природный газ, нефтяные и коксовые газы. Из смеси N₂ и H₂ (в отношении 1:3) при высокой температуре и давлении в присутствии катализаторов получают аммиак:

$$N_2 + 3H_2 = 2NH_3$$
.

Синтетический аммиак используют не только для производства аммонийных солей, но и азотной кислоты, которая идет для получения аммонийно-нитратных и нитратных удобрений.

Нитратные удобрения

Нитратные удобрения — натриевая и кальциевая селитра — составляют менее 1% от выпускаемых азотных удобрений, однако рассмотрение их свойств и превращений в почве представляет интерес и с точки зрения правильного понимания особенностей применения аммиачной селитры и мочевины.

Натриевая селитра (нитрат натрия, азотнокислый натрий) NaNO₃ содержит 15—16% азота.

До разработки синтетического способа получения аммиака натриевая селитра, добывавшаяся из естественных залежей гуано в Чили, являлась основным азотным удобрением. Выпускаемая в настоящее время натриевая селитра — побочный продукт при получении азотной кислоты из аммиака. Это мелкокристаллическая соль белого или желтовато-бурого цвета, хорошо растворимая в воде. Обладает заметной гигроскопичностью, при хранении в неблагоприятных условиях может слеживаться. При правильном хранении не слеживается и сохраняет удовлетворительную рассеваемость.

Жальций) — Са (NO₃)₂ содержит 13—15% азота. Получается при нейтрализации азотной кислоты известью. Кристаллическая соль белого цвета, хорошо растворимая в воде. Обладает очень высокой гигроскопичностью и даже при нормальных условиях хранения сильно отсыревает, расплывается и слеживается. Хранят и перевозят ее в специальной водонепроницаемой упаковке. Для уменьшения гигроскопичности гранулируется с применением гидрофобных покрытий. Однако гранулирование не устраняет полностью неблагоприятные физические свойства удобрения.

 реакцию в сторону подщелачивания. Эти удобрения при систематическом применении на кислых дерново-подзолистых почвах снижают почвенную кислотность.

Особенно хорошие результаты на кислых, бедных основаниями почвах дает кальциевая селитра. При ее внесении уменьшается кислотность и улучшаются физические свойства почвы, так как кальций коагулирует почвенные коллоиды.

В почве селитры быстро растворяются и вступают в обменные реакции с катионами почвенного поглощающего комплекса:

$$\begin{split} &(\Pi\Pi\mathrm{K}) \mathop{\mathrm{Ca}}^{\mathrm{Ca}} + 2\mathrm{NaNO_3} \underset{\mathrm{Ca}}{\longrightarrow} (\Pi\Pi\mathrm{K}) \mathop{\mathrm{Na}}_{\mathrm{Na}} + \mathrm{Ca(NO_3)_2}; \\ &H \\ &(\Pi\Pi\mathrm{K}) \mathop{\mathrm{H}}_{\mathrm{H}} + \mathrm{Ca(NO_3)_2} \underset{\mathrm{Ca}}{\longrightarrow} (\Pi\Pi\mathrm{K}) \mathop{\mathrm{Ca}}_{\mathrm{H}} + 2\mathrm{HNO_3}. \end{split}$$

Катионы Na^+ пли Ca^{2+} поглощаются почвой, а анионы NO_3^- остаются в почвенном растворе, сохраняя высокую подвижность. Поэтому в условиях влажного климата или при обильном орошении, особенно на легких почвах, нитратный азот может вымываться. 1

Селитры не рекомендуется вносить осенью, лучше заделывать их весной под предпосевную культивацию. Очень хорошо использовать эти удобрения в подкормку под озимые и пропашные культуры, а натриевую селитру — также в рядки при посеве. Кальциевая селитра малопригодна для внесения в рядки из-за неблагоприятных физических свойств.

Нитратные удобрения можно применять на различных почвах под все сельскохозяйственные культуры. На кислых дерново-подзолистых почвах, особенно при внесении под культуры, чувствительные к высокой кислотности, нитратные удобрения дают лучшие результаты, чем аммиачные. На черноземах они не имеют преимуществ. Натриевая селитра малопригодна на засоленных почвах и солонцах. На дерново-подзолистых почвах первое место по эффективности занимает кальциевая селитра, на черноземах для большинства культур она равноценна натриевой и уступает ей лишь при внесении под сахарную свеклу, кормовые и столовые корнеплоды. Более высокая эффективность натриевой селитры связана с положительным действием катиона натрия. Он усиливает отток углеводов из листьев в корни, в результате повышается урожай корней и содержание в них сахара.

🟅 Аммонийные и аммиачные удобрения

Твердые аммонийные удобрения выпускаются в относительно небольших количествах (7—8%) от валового производства азотных удобрений.

УТвердые аммонийные удобрения. Сульфат аммония (сернокислый аммоний) — (NH₁)₂SO₄ содержит 20,8—21% азота. У Кристаллическая соль, хорошо растворимая в воде; гигроскопич-

ность ее очень слабая, поэтому при нормальных условиях хранения слеживается мало и сохраняет хорошую рассеваемость. Получается насыщением крепкой серной кислоты газообразным аммиаком. При производстве сульфата аммония может использоватья синтетический аммиак, а также аммиак, образующийся при коксовании каменного угля В готовом продукте возможно содержание небольшого количества свободной серной кислоты (0,2—0,4%) и других примесей.

Синтетический сульфат аммония белого цвета, а коксохимический, из-за наличия органических примесей, имеет серую, синеватую или красноватую окраску.

Удобрение содержит около 24% серы и является хорошим источником этого элемента для питания растений.

Сульфат аммония - натрия — (NH₄)₂SO₄+Na₂SO₄ содержит 16% азота; отход при производстве капролактама. Обладает хорошими физическими свойствами, малогигроскопичен и не слеживается.

\(\begin{align*} \lambda \text{ л о р и с т ы й а м м о н и й — NH₄Cl содержит 24—26% азота. Побочный продукт при производстве соды. Кристаллическая соль белого цвета, хорошо растворимая в воде, обладает хорошими физическими свойствами \(\beta \text{X}\) лористый аммоний содержит большое количество хлора (67%) и малопригоден для культур, чувствительных к этому элементу.

Сульфат аммония (и хлористый аммоний) — удобрения физиологически кислые, так как растения быстрее и в большем количестве потребляют катионы $\mathrm{NH_4^+}$, чем анионы $\mathrm{SO_4^{2-}}$ (или $\mathrm{Cl^-}$). При однократном внесении умеренных доз этих удобрений заметного подкисления почвы не наблюдается, но при систематическом применении, особенно на малобуферных почвах, происходит значительное их подкисление. После внесения в почву аммонийные удобрения быстро растворяются в почвенной влаге и вступают в обменные реакции с катионами почвенного поглощающего комплекса:

$$(\Pi\Pi K) \overset{Ca}{Ca} + (NH_4)_2 SO_4 \xrightarrow{} (\Pi\Pi K) \overset{NH_4}{NH_4} + CaSO_4;$$

$$(\Pi\Pi K) \overset{H}{H} + NH_4 Cl \xrightarrow{} (\Pi\Pi K) \overset{NH_4}{H} + HCl.$$

Поглощенный аммоний хорошо доступен для растений. В то же время подвижность его в почве и опасность вымывания в условиях обильного увлажнения уменьшается. Аммонийные удобрения можно вносить заблаговременно, с осени под зяблевую вспашку.

Поглощение аммония почвой и его меньшая подвижность могут играть и отрицательную роль. Аммонийный азот локализуется в почве в очагах его внесения и очень слабо передвигается, поэтому при внесении аммонийных удобрений в подкормку или в рядки при посеве использование азота молодыми растениями, имеющими слаборазвитую корневую систему, затруднено, кроме того, интенсивное поступление аммонийного азота в молодые проростки может оказать на вих

отрицательное влияние из-за токсического действия избытка аммиака.

В рядки или подкормку лучше вносить нитратные удобрения, аммонийные применяются преимущественно до посева в качестве основного удобрения. С течением времени разница в подвижности нитратных и аммонийных удобрений сглаживается, так как аммонийный азот постепенно подвергается нитрификации и переходит в нитратную форму.

Хлористый аммоний нитрифицируется медленнее, чем сульфат аммония, что связано, очевидно, с отрицательным влиянием хлора на деятельность нитрифицирующих бактерий.

В результате нитрификации аммонийных удобрений образуется HNO_3 , освобождается H_2SO_4 или HCl. Эти кислоты подкисляют почвенный раствор и вытесняют основания из почвенного поглощающего комплекса. При систематическом применении аммонийных удобрений, особенно на малобуферных слабоокультуренных дерново-подзолистых почвах, повышается актуальная, обменная и гидролитическая кислотность, уменьшается степень насыщенности почвы основаниями, увеличивается содержание подвижных форм алюминия и марганца. В результате ухудшаются условия роста растений и эффективность удобрений снижается. Возрастает потребность в известковании.

Особенно сильно реагируют на подкисляющее действие аммонийных удобрений культуры, чувствительные к почвенной кислотности: клевер, пшеница, ячмень, свекла, капуста. Для этих культур аммонийные удобрения уже с первых лет их применения оказываются менее эффективными, чем нитратные. Известкование дерново-подзолистых почв снимает отрицательное влияние аммонийных удобрений на свойства почвы. Хорошая заправка почвы навозом, повышая ее буферность, также снижает отрицательное действие этих удобрений на свойства почвы и имеет важное значение для более эффективного их применения.

Эффективность сульфата аммония и хлористого аммония при внесении под зерновые, сахарную свеклу, кормовые корнеплоды обычно одинаковая. Для культур, чувствительных к хлору (картофель, табак, лен, конопля, хлопчатник, гречиха, цитрусовые, многие овощные и плодовые культуры), хлористый аммоний, содержащий 66,6% хлора, нежелателен. Избыток хлора снижает урожайность этих культур или, чаще, его качество.

Отрицательное влияние хлора особенно сильно проявляется на легких кислых почвах. Оно может быть значительно снижено, если вносить хлористый аммоний с осени с тем, чтобы хлор вымылся в нижние слои почвы, однако при этом во влажных районах, особенно на легких почвах, возможны частичные потери азота.

Жидкие азотные удобрения. Жидкий аммиак — NH₃ содержит 82,3% азота. Получается сжижением газообразного аммиака под давлением. По внешнему виду бесцветная, подвижная жидкость, плотность 0,61 при 20°С, температура кипения 34°С. При хра-

нении в открытых сосудах NH₃ быстро испаряется. Жидкий аммиак обладает высокой упругостью паров (при 10°C 5,2 кгс/см² и при 38°C 14 кгс/см²), поэтому его хранят и транспортируют в стальных баллонах или цистернах, выдерживающих высокое давление.

↑ А м м и а к а т ы — раствор аммиачной селитры или аммиачной селитры в смеси с кальциевой или мочевиной в жидком аммиаке. В зависимости от состава содержат от 30 до 45% азота. Жидкость светложелтого или желтого цвета, транспортировать и хранить ее можно в цистернах или баллонах, рассчитанных на небольшое давление. Аммиакаты могут вызывать коррозию черных металлов, поэтому оборудование для их применения должно быть из специальных марок стали или из алюминия.

Аммиачная вода — NH₄OH — водный 25%-ный и 20%ный раствор аммиака, выпускается двух сортов — с содержанием азота 20,5 и 18%. Бесцветная или желтоватая жидкость с резким запахом аммиака (нашатырного спирта). Упругость паров небольшая. Хранить и транспортировать аммиачную воду можно в герметически закрывающихся резервуарах (цистернах, баках), рассчитанных на невысокое давление.

Выпуск и применение жидких азотных удобрений обходится значительно дешевле, чем твердых. При производстве жидких азотных удобрений отпадает необходимость в строительстве цехов азотной кислоты, кристаллизации, упарки, грануляции, сушки, что позволяет значительно снизить капиталовложения на строительство азотно-тукового завода равноценной (по азоту) мощности. Стоимость единицы азота в жидком и водном аммиаке примерно в 1,5—2 раза меньше, чем в аммиачной селитре (табл. 25). Кроме того, как показа-

Таблица 25 Издержки производства и отпускная цена азотных удобрений (руб. на 1 т азота)

Показатели	Аммиачная	Аммиачпая	Безводный
	селитра	вода	аммиак
Капиталовложения	322	206	172
Себестоимость	78	61.	52
Приведенные затраты	123	92	78
Отпускная цена	150	107	87
То же, в % к аммиачной селитре	100	71	58

ли широкие производственные испытания, в 2—3 раза сокращаются затраты труда на внесение жидких удобрений, так как отпадают все работы по подготовке удобрений к внесению (дробление, просеивание, засыпка в туковые сеялки и т. п.), а все операции по их использованию (погрузке, выгрузке, внесению в почву) полностью механизированы. При правильном применении жидкие азотные удобрения

дают такие же прибавки урожайности культур, как и равная доза азота в аммиачной селитре.

Все жидкие азотные удобрения вносят специальными мащинами (рис. 5), обеспечивающими немедленную заделку их на глубину не менее 10—12 см на тяжелых почвах и 14—18 см на легких. Поверхностное внесение этих удобрений недопустимо, так как аммиак быстро испаряется. При более мелкой заделке также возможны значительные его потери, особенно на легких песчаных и супесчаных почвах. Из влажной почвы потери аммиака значительно меньше, чем из сухой.

При внесении жидких аммиачных удобрений ион аммопия (безводный аммиак превращается в газ и связывается почвенной влагой с образованием гидроокиси аммония) обменно поглощается и поэтому слабо передвигается в почве. В первые дни после заделки удобрений почва подщелачивается, а затем по мере нитрификации аммиачного азота ее реакция сдвигается в сторону подкисления. При нитрификации азота удобрений возрастает его подвижность в почве.

Жидкие азотные удобрения можно применять как основное (допосевное) удобрение под все культуры и вносить не только под предпосевную культивацию, но и осенью под зяблевую вспашку. Их можно применять и для подкормки пропашных культур. В этом случае во избежание ожогов растений удобрения заделывают в середину междурядий или на расстоянии не менее 10—12 см от растений.

При работе с жидкими азотными удобрениями следует соблюдать правила техники безопасности, так как пары аммиака вызывают раздражение слизистых оболочек глаз и дыхательных путей, удушье и кашель. При осмотре и ремонте емкостей из-под этих удобрений необходимы меры предосторожности, так как смесь аммиака с воздухом взрывоопасна.

Аммонийно-нитратные удобрения. Аммиачная селитра (азотнокислый аммоний, нитрат аммония) — NH₄NO₃ — основ-

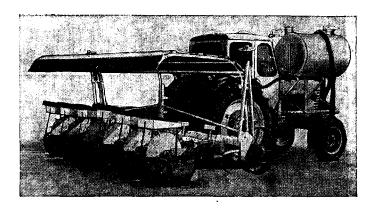


Рис. 5. Рассадопосадочная машина для внесения удобрений в жидком виде,

ное азотное удобрение, содержит 34,5—35% азота. Получается нейтрализацией азотной кислоты аммиаком:

$$NH_3 + HNO_3 = NH_4NO_3$$
.

Аммиачную селитру выпускают в виде кристаллов белого цвета или гранул размером 1—3 мм, различной формы (сферической, в виде чешуек, пластинок). Негранулированная кристаллическая аммиачная селитра обладает высокой гигроскопичностью, при хранении слеживается, поэтому хранить ее следует в водонепроницаемых мешках в сухом помещении. Гранулированная селитра менее гигроскопична, меньше слеживается, сохраняет хорошую рассеваемость, особенно если в процессе ее получения вводятся в небольших количествах специальные кондиционирующие (гидрофобные) добавки.

Аммиачная селитра — хорошо растворимое высококонцентрированное удобрение. Может применяться под любые культуры и на всех почвах перед посевом в рядки или лунки и в подкормку.

В аммиачной селитре половина азота находится в нитратной и половина в аммонийной форме. Из раствора NH_4NO_3 растения быстрее поглощают катион NH_4^+ , чем анион NO_3^- , поэтому аммиачная селитра физиологически кислое удобрение, но подкисляет почву слабее, чем сульфат аммония.

При взаимодействии NH_4NO_3 с почвенным поглощающим комплексом катион NH_4^+ поглощается почвой, а анион NO_3^- остается в почвенном растворе, сохраняя высокую подвижность:

$$\begin{array}{c} (\Pi\Pi\mathrm{K}) \overset{\mathrm{Ca}}{\underset{\mathrm{Ca}}{\mathrm{Ca}}} + 2\mathrm{NH_4NO_3} \overset{\longrightarrow}{\longrightarrow} (\Pi\Pi\mathrm{K}) \overset{\mathrm{NH_4}}{\underset{\mathrm{Ca}}{\mathrm{NH_4}}} + \mathrm{Ca(NO_3)_2}; \\ (\Pi\Pi\mathrm{K}) \overset{\mathrm{H}}{\underset{\mathrm{Ca}}{\mathrm{H}}} + \mathrm{NH_4NO_3} \overset{\longrightarrow}{\longrightarrow} (\Pi\Pi\mathrm{K}) \overset{\mathrm{NH_4}}{\underset{\mathrm{Ca}}{\mathrm{H}}} + \mathrm{HNO_3}. \end{array}$$

На почвах, насыщенных основаниями (сероземы, черноземы), в растворе образуются азотнокислые соли кальцпя (или магния) и почвенный раствор не подкисляется даже при систематическом внесении высоких доз удобрения. Для этих почв аммиачная селитра — одна из лучших форм азотных удобрений.

На кислых дерново-подзолистых почвах, содержащих в поглощенном состоянии мало кальция и много ионов П⁺, в почвенном растворе образуется HNO₃, поэтому он подкисляется. Подкисление носит временный характер, так как исчезает по мере потребления нитратного азота растениями. В первое же время, особенно при внесении большой дозы селитры и неравномерном ее рассеве, в почве могут создаваться очаги с высокой кислотностью.

При длительном применении аммининой селитры на малобуферных дерново-подзолистых почвах подкисление может быть довольно сильным, в результате эффективность этого удобрения, особенно при внесении под культуры, чувствительные к повышенной кислотности, заметно снижается.

На кислых дерново-подзолистых почвах более высокий эффект, особенно при систематическом применении, дает нейтрализованная, или известковая, аммиачная селитра $NH_4NO_3+CaCO_3$. Она содержит 18-23% азота и получается сплавлением или смешением азотнокислого аммония с эквивалентным количеством извести, мела или доломита. Нейтрализация доломитом особенно целесообразна для бедных магнием песчаных и супесчаных почв.

Мочевина

Мочевина (карбамид) — СО(NH₂)₂ содержит 45—46% азота. Получается синтезом из аммиака и углекислого газа при высоких давлениях и температуре. Белый мелкокристаллический продукт, хорошо растворимый в воде. Гигроскопичность при температуре до 20°С сравнительно небольшая. При хороших условиях хранения слеживается мало, сохраняет удовлетворительную рассеваемость. Особенно хорошими физическими свойствами обладает гранулированная мочевина.

Во время грануляции мочевины образуется биурет, обладающий токсическим действием, однако содержание его в гранулированном удобрении не превышает 1% и практически безвредно для растений при обычных способах применения.

В почве под влиянием уробактерий, выделяющих фермент урсазу, мочевина быстро (за 2—3 дня) аммонифицируется с образованием углекислого аммония:

$$CO(NH_2)_2 + 2H_2O = (NH_4)_2CO_3$$
.

В первые дни после внесения мочевины вследствие образования $(NH_4)_2CO_3$ (гидролитически щелочная соль) происходит временное местное подщелочение почвы. Образующийся аммоний поглощается почвой и постепенно нитрифицируется, причем нитрификация его протекает значительно быстрее, чем $(NH_4)_2SO_4$ и особенно NH_4Cl . В результате нитрификации подщелочение почвы сменяется некоторым подкислением.

На малобуферных легких почвах смещения реакции почвенного раствора могут быть особенно заметными, но после усвоения азота растениями в почве не остается ни щелочных, ни кислотных остатков.

Мочевина — одно из лучших азотных удобрений и по эффективности не уступает аммиачной селитре.

Ее можно применять как основное удобрение или в подкормку под все культуры и на различных почвах. При внесении в почву мочевины необходимо сноевременно ее заделать, так как при поверхностном размещении удобрения возможны потери азота вследствие улетучивания аммиака из углекислого аммония, особенно на карбонатных и щелочных почвах. Значительные потери в форме аммиана могут происходить при использовании мочевины в подкормку на лугах и пастбищах, поскольку дернина обладает высокой уреавной

активностью. Мочевину с успехом можно применять для внекорневой подкормки овощных и плодовых культур, а также поздних подкормок пшеницы с целью повышения содержания белка в зерне. Кроме того, мочевина потребляется в значительных количествах в животноводстве как азотная добавка к углеводистым кормам.

Для снижения потерь азота удобрений и повышения их эффективности разрабатывается технология производства медленнодействующих форм азотных удобрений — малорастворимых (мочевиноформальдегидного удобрения) либо с замедлением освобождения азота (путем различных синтетических покрытий). Для консервации азота мочевины и аммиачных удобрений в почве в аммонийной форме гранулы покрывают серой или в состав удобрений вводят ингибиторы нитрификации.

ФОСФОРНЫЕ УДОБРЕНИЯ

Значение фосфора для растений и содержание его в почве

Фосфор — важный элемент питания растений. Растения потребляют его главным образом в виде солей ортофосфорной кислоты (H_3PO_4), а также могут усваивать соли мета- и пирофосфорных кислот.

Поступившие в растения ионы $H_2PO_4^-$ или HPO_4^{2-} образуют различные органические соединения. Фосфор входит в нуклеиновые кислоты и нуклеопротеиды, участвующие в построении цитоплазмы и ядра клеток. Он содержится в фитине — запасном веществе семени, который используется как источник фосфора во время прорастания, а также сахарофосфатах, витаминах и многих ферментах.

В тканях растений присутствуют в небольших количествах также неорганические фосфаты, которые играют важную роль в создании, буферной системы клеточного сока и служат резервом фосфора для образования различных фосфорорганических соединений.

В растительной клетке фосфор играет исключительно важную роль в энергетическом обмене, участвует в разнообразных процессах обмена веществ, деления и размножения. Особенно велика роль этого элемента в углеводном обмене, в процессах фотосинтеза, дыхания и брожения.

Самые разнообразные превращения углеводов в растении начинаются с присоединения фосфорной кислоты к молекулам углеводов или с ее отщепления, то есть с их фосфорилирования или дефосфорилирования. При этом особенно важная роль принадлежит аденозинтрифосфорной кислоте (АТФ) и другим богатым энергией фосфор зам соединениям.

ъшая роль фосфора в углеводном обмене обусловливает полое влияние фосфорных удобрений на накопление сахара в зекле, крахмала в клубнях картофеля и т. д.

грает также важную роль в обмене азотистых веществ в тановление нитратов до аммиака, образование амино-

кислот, их дезаминирование и переаминирование происходят при участии фосфора. Этим определяется тесная связь между азотным и фосфорным питанием растений. При недостатке фосфора нарушается синтез белка и уменьщается содержание его в растении.

Фосфора больше всего содержится в репродуктивных и молодых растущих органах и частях растения, где идет интенсивный синтез органического вещества. Из более старых листьев он может передвигаться к зонам роста и использоваться повторно, поэтому внешние признаки его недостатка проявляются у растений прежде всего на старых листьях. В этом случае они приобретают характерный красно-фиолетовый или голубоватый оттенок, иногда более темно-зеленую окраску (например, у картофеля). При недостатке фосфора замедляется рост и задерживается созревание растений, снижается урожай и ухудшается его качество.

Растения наиболее чувствительны к недостатку фосфора в самом раннем возрасте, когда их слаборазвитая корневая система обладает низкой усваивающей способностью. Отрицательные последствия от недостатка фосфора в этот период не могут быть исправлены последующим обильным питанием. Поэтому обеспечение растений фосфором с начала вегетации имеет исключительно важное значение. Очень благоприятно на рост, развитие растений и формирование урожая влияет внесение небольших количеств легкодоступных фосфорных удобрений в рядки (лунки или гнезда) при посеве и посадке. Усиленное фосфорное питание растений ускоряет образование репродуктивных органов и созревание растений, повышает урожай и его качество. !

Содержание фосфора (P_2O_5) в различных почвах колеблется от 0,03 до 0,2%. Общий запас фосфора больше в почвах с высоким содержанием органического вещества (гумуса): в среднем от 1500 до 6000 кг на 1 кг в пахотном слое почвы, но основная масса его находится в форме минеральных и органических соединений, недоступ-

ных для растений.

В материнских породах фосфор содержится чаще в виде фторапатита $Ca_5F(PO_4)_3$ и гидроксилапатита $Ca_5OH(PO_4)_3$. При разрушении этих первичных фосфорсодержащих минералов образуются вторичные минеральные соединения фосфора, представленные различными солями ортофосфорной кислоты. Помимо апатита, в почвах содержатся и другие минеральные соединения фосфора. В кислых почвах (дерново-подзолистых и красноземах) образуются фосфаты полуторных окислов AlPO4 и FePO4, а также основные соли железа и алюминия Fe₂(OH)₃PO₄, Al₂(OH)₃PO₄, которые характеризуются очень слабой растворимостью и доступностью для растений. В почвах, насыщенных основаниями (черноземах и сероземах), образуются преимущественно двух- и трехзамещенные фосфаты кальция $CaHPO_A$ и $Ca_3(PO_A)_2$. Они слаборастворимы в воде, но постепенно растворяются содержащимися в почвенном растворе угольной, азотной и органическими кислотами и поэтому более доступны растениям, чем апатит и фосфаты полуторных окислов. Во всех почвах в очень незначительном количестве присутствуют хорошо растворимые в воде однозамещенные фосфаты кальция и магния, а также одно- и двухзамещенные фосфаты калия, натрия и аммония. Они быстро используются растениями и микроорганизмами и превращаются в нерастворимые фосфаты при взаимодействии с Ca, Mg, Al и Fe.

В результате дсятельности растений и микроорганизмов в почвах пакапливаются также органические соединения фосфора. Они представлены нуклеопротеидами, фитином, фосфатидами, сахарофосфатами и другими органическими соединениями, входящими в состав растений и микроорганизмов. Содержание органических фосфатов колеблется от 10% в дерново-подзолистых и сероземных почвах до 50% в черноземах от общего количества P_2O_5 . Растения могут усваивать органические фосфаты только после их минерализации и отщепления фосфорной кислоты.

Недоступные для растений минеральные и органические соединения фосфора переходят в усвояемые очень медленно. Несмотря на большие общие запасы фосфора, его усвояемых соединений в почве содержится обычно мало, и, чтобы получить высокий урожай, необходимо внесение фосфорных удобрений.

За вегетационный период растения потребляют из почвы с 1 га от 20 до 60 кг P_2O_5 . Больше фосфора в зерне и значительно меньше в соломе, поэтому значительная часть усвоенного растениями фосфора вместе с товарной продукцией отчуждается из хозяйства. В связи с этим для пополнения запасов фосфора в почве требуется внесение фосфорных удобрений. Этим определяется высокая потребность в фосфорных удобрениях и большое значение их для повышения урожаев. Потребность в фосфорных удобрениях особенно возрастает при достаточном обеспечении растений азотом.

Фосфорные удобрения в зависимости от растворимости и доступности для растений подразделяют на три группы.

Удобрения, хорошо растворимые в воде, суперфосфат простой и суперфосфат двойной.

Удобрения, слаборастворимые в воде, но растворимые в слабых кислотах (2%-ной лимонной кислоте и лимоннокислом аммонии),— преципитат, томасшлак, термофосфаты, обесфторенный фосфат.

У добрения, нерастворимые в воде, полностью растворимые только в сильных кислотах, — фосфоритная мука, костяная мука.

Содержание действующего вещества в удобрениях выражают в расчете на пятиокись фосфора (P_2O_5).

\ Источник получения фосфорных удобрений — природные фосфорсодержащие агроруды (фосфориты и апатиты), а также богатые фосфором отходы металлургической промышленности (томасшлак, мартеновские шлаки). Основное значение имеют апатиты и фосфориты, залежи которых в нашей стране огромны. Крупнейшее в СССР и самое мощное в мире месторождение апатитов находится на Кольском полуострове (Хибины). Оно представлено апатито-нефели-

новой породой, из которой после сортировки и обогащения получают апатитовый концентрат, содержащий 39—40% P_2O_5 . Залежи фосфоритов имеются и в других областях СССР. Наибольшее значение имеют вятско-камские, егорьевские (Московская область), щигровские (Курская область), брянские, ашинские (Башкирская АССР), актюбинские, изюмские и кролевецкие (Украина) фосфориты. Они содержат от 16 до 26% P_2O_5 . Крупные залежи фосфоритов находятся в Казахстане (Каратау) и в Сибири (Белкинские в Кемеровской области и Сейбенские в Красноярском крае).

Фосфорные удобрения получают кислотной и термической переработкой фосфатов. В ассортименте фосфорных удобрений, выпускаемых в нашей стране, наибольшая доля приходится на суперфосфат. Постоянно расширяется производство двойного суперфосфата. В крупном масштабе осуществляется выпуск продуктов гидротермической переработки фосфатов.

5 Суперфосфат

C у пер фосфат простой получают обработкой размолотого апатита или фосфорита серной кислотой. При действии серной кислоты на фосфатное сырье происходит разложение апатита или фосфорита с образованием водорастворимого однозамещенного фосфата кальция $Ca(H_2PO_4)_2$ и гипса $CaSO_4$, нерастворимого в воде:

$$\begin{aligned} 2\text{Ca}_5\text{F}(\text{PO}_4)_5 + 7\text{H}_2\text{SO}_4 + 3\text{H}_2\text{O} &= 3\text{Ca}(\text{H}_2\text{PO}_4)_2 \cdot \text{H}_2\text{O} + 7\text{CaSO}_4 + 2\text{HF}; \\ \text{Ca}_3(\text{PO}_4)_2 + 2\text{H}_2\text{SO}_4 + \text{H}_2\text{O} &= \text{Ca}(\text{H}_2\text{PO}_4)_2 \cdot \text{H}_2\text{O} + 2\text{CaSO}_4. \end{aligned}$$

Гипс остается в составе удобрения и занимает около 40% его массы. Поэтому фосфора в таком суперфосфате почти вдвое меньше, чем в исходном сырье. По этой причине низкопроцентные фосфориты не используют для изготовления суперфосфата. В Советском Союзе для его получения применяют преимущественно апатитовый концентрат, а также высокопроцентные фосфориты.

• Простой суперфосфат содержит 19-20% P_2O_5 . Большая часть фосфора в суперфосфате находится в виде монофосфата кальция, 5-5,5% массы удобрения содержится в виде свободной фосфорной кислоты. В суперфосфате находится небольшое количество дикальциевого фосфата $CaHPO_4 \cdot 2H_2O$, а также трехкальциевого фосфата и фосфатов железа и алюминия. Суперфосфат оценирается по содержанию в нем усвояемого фосфора, то есть растворимого в воде и цитратном растворе (аммиачный раствор лимоннокислого аммония).

Усвояемый фосфор в суперфосфате составляет 88-98% общего

содержания.

Суперфосфат выпускается в виде гранул размером 2—4 мм. Обладает хорошими физическими свойствами: не слеживается, сохраняет хорошую рассеваемость. При гранулировании свободная фосфорная кислота нейтрализуется и суперфосфат высушивается, поэтому содержание воды и свободной фосфорной кислоты составляет соответственно 1—4% и 1—1,5%. Содержание Р₂О₃ около 20%.

При нейтрализации свободной кислотности суперфосфата аммиаком получают аммонизированный суперфосфат с содержанием азота около 1,5%.

Двойной суперфосфат в отличие от простого имеет высокое содержание $P_2O_5-42-49\%$ и не содержит гипса. Фосфор находится в нем в виде водорастворимого монофосфата кальция $Ca(H_2PO_4)_2 \cdot H_2O$ и свободной фосфорной кислоты (4,5-5,7%).

При производстве двойного суперфосфата апатит (или фосфорит) обрабатывают серной кислотой. Берут ее больше, чем при производстве простого суперфосфата, с тем, чтобы получить не монофосфат кальция, а фосфорную кислоту, которой затем обрабатывают новую порцию сырья и получают двойной суперфосфат — Ca(H₂PO₄)₂·H₂O:

$$2\text{Ca}_5\text{F}(\text{PO}_4)_3 + 10\text{H}_2\text{SO}_4 = 6\text{H}_3\text{PO}_4 + 10\text{CaSO}_4 + 2\text{HF}; \\ 2\text{CaF}(\text{PO}_4)_3 + 14\text{H}_3\text{PO}_4 + 10\text{H}_2\text{O} = 10\text{Ca}(\text{H}_2\text{PO}_4)_2 \cdot \text{H}_2\text{O} + 2\text{HF}.$$

Двойной суперфосфат готовят в гранулированном виде. Производство его как высококонцентрированного и транспортабельного удобрения имеет особенно большое значение для районов, удаленных от туковых заводов.

Химические и физические свойства, применение и эффективность двойного суперфосфата такие же, как и простого. Только при удобрении культур, положительно реагирующих на гипс (клевер и другие бобовые), более сильное положительное действие оказывает простой суперфосфат.

В почве суперфосфат вступает в химическое взаимодействие с полуторными окислами, карбонатами кальция и магния (или поглощенным кальцием) и превращается в нерастворимые в воде фосфаты, менее доступные для растений, т. е. подвергается химическому поглощению, или так называемой ретроградации. На почвах, насыщенных основаниями, — черноземах и особенно сероземах и других карбонатных почвах — образуются двухзамещенный и трехзамещенный фосфаты кальция.

На кислых дерново-подзолистых почвах и красноземах, содержащих большое количество подвижных форм полуторных окислов, образуются фосфаты алюминия и железа, слабо доступные для растений. Чем больше содержится в почве подвижных форм полуторных окислов, тем сильнее происходит химическое поглощение фосфорной кислоты суперфосфата. В результате этого уменьшается использование фосфора растениями и снижается его эффективность.

Суперфосфат почти полностью закрепляется в месте его внесения и очень слабо передвигается в почве. При внесении в качестве основного удобрения суперфосфат следует заделывать под плуг, с тем чтобы удобрение находилось в более глубоком и постоянно влажном слое почвы, где размещается основная масса деятельных корней растений.

В качестве основного удобрения суперфосфат лучше вносить с осени под зяблевую вспашку, особенно в засушливых районах, или весной под перепашку зяби.

В подкормку под пропашные культуры можно вносить суперфосфат с заделкой при междурядной обработке почвы или специальными культиваторами-растениепитателями. При мелкой заделке суперфосфата основная масса удобрения оказывается в верхнем слое почвы, который быстро высыхает. Корни в этом слое отмирают, поэтому фосфор удобрения хуже используется растениями. Поверхностное внесение его в подкормку без заделки (под яровые зерновые и другие культуры сплошного сева) малоэффективно.

Связывание суперфосфата почвой происходит сильнее при более полном контакте удобрения с почвой (разбросное внесение, мелкие

размеры частиц), чем при локальном размещении.

Закрепление суперфосфата почвой, особенно гранулированного, снижается при местном внесении его в рядки или гнезда при посеве, а также при ленточном основном внесении.

Убффективность гранулированного суперфосфата при одинаковых способах внесения (как при разоросном внесении до посева, так и при местном внесении в рядки или лунки) значительно выше, чем порошковидного, особенно на кислых почвах. Это обусловлено снижением химического связывания фосфора вследствие уменьшения площади соприкосновения удобрения с почвой.

По данным опытов, небольшие дозы суперфосфата при местном внесении дают такие же прибавки урожая, как и большие дозы при разбросном внесении

В рядки при посеве зерновых и сахарной свеклы вносится 0,5—0,75 ц на 1 га суперфосфата; в лунки при посадке картофеля и овощных культур — 0,75—1 ц на 1 га; при посеве кукурузы — 0,2—0,4 ц на 1 га.

0,4 п на 1 га. Коэффиционт использования фосфора из суперфосфата при допосевном его применении вразброс под вспашку 15—25% от внесенного количества, а при рядковом внесении возрастает в полтора раза.

Для получения высокого урожая сахарной свеклы, кукурузы, картофеля, зерновых, овощных и других культур пеобходимо сочетать внесение суперфосфата в основном удобрении до посева с внесением небольшой дозы его в рядки или лунки при посеве. При этом создаются хорошие условия питания растений фосфором как в первый период роста за счет рядкового удобрения, так и в последующие периоды за счет основного удобрения, внесенного под плуг.

Преципитат, томасшлак, термофосфаты, обесфторенный фосфат

Преципитат в форме $CaHPO_4 \cdot 2H_2O$ — двухзамещенного фосфата кальция — содержит от 35 до 41% P_2O_5 . Получается путем кислотной переработки фосфатов при осаждении фосфорной кислоты известковым молоком или мелом, а также в качестве отхода при желатиновом производстве.

Фосфор предипитата нерастворим в воде, но растворяется в лимоннокислом аммонии и хорошо усваивается растениями. Удобре-

ние обладает хорошими физическими свойствами: не слеживается, сохраняет хорошую рассеваемость, может смешиваться с любым удобрением. Преципитат можно применять как основное удобрение под различные культуры на всех почвах. Он меньше, чем суперфосфат, закрепляется в почве, поэтому более эффективен на богатых полуторными окислами кислых почвах и карбонатных сероземах. На черноземах преципитат близок по эффективности к суперфосфату.

Т о мас шлак — побочный продукт при переработке богатых фосфором чугунов на железо и сталь по щелочному способу Томаса. При плавлении чугуна в шихту добавляют известь СаО, которая связывает получающийся при окислении фосфора фосфорный ангидрид P_2O_5 с образованием кальциевой соли фосфорной кислоты. Эта соль вместе с кремнекислым кальцием и другими примесями всплывает на поверхность металла в виде шлака, который после охлаждения размалывается в тонкую муку.

Томасшлак — тяжелый, тонкий порошок темного цвета. Содержит от 14 до 20% P_2O_5 . Фосфор в нем находится в основном в виде тетракальциевого фосфата $Ca_4P_2O_9$, а также двойной соли тетракальциевого фосфата и кремнекислого кальция $Ca_4P_2O_9 \cdot CaSiO_3$. Эти соединения растворимы в 2%-ной лимонной кислоте, и их фосфор доступен для растений. Согласно стандарту, содержание лимоннорастворимой P_2O_5 должно быть не менее 14%.

Томасшлак можно применять в качестве основного удобрения на всех почвах. По эффективности не уступает суперфосфату, но более высокий эффект дает на дерново-подзолистых кислых почвах, где действует лучше суперфосфата, так как содержит свободную окись кальция и тетракальциевый фосфат, которые уменьшают почвенную кислотность. Томасшлак нельзя смешивать с аммиачными удобрениями.

В качестве удобрения используются также мартеновские шлаки (фосфатшлаки), которые получаются как отход при выплавке стали из фосфористых руд. Содержат от 10 до 15% P_2O_5 . По эффективности близки к томасшлаку.

Термофосфаты получаются сплавлением или спеканием размолотого фосфата или апатита с щелочными солями — содой или поташом или природными калиевыми силикатами, а также с сульфатами калия и натрия. При этом образуются усвояемые растениями кальциево-натриевые или кальциево-калиевые фосфорнокислые соли CaNaPO₄+Ca₂SiO₄ или CaKPO₄+ Ca₂SiO₄.

Термофосфаты содержат от 18 до 34% P_2O_5 . По свойствам и эффективности они близки к томасшлаку. Могут применяться как основное удобрение на всех почвах, но как щелочные удобрения эффективнее на кислых почвах.

При силавлении фосфорита или апатита с силикатами магния получаются магниевые плавленые фосфаты. Они содержат около 20% усвояемой P_2O_5 и 6—12% MgO, особенно эффективны на бедных магнием легких песчаных и супесчаных почвах. Термофосфаты нельзя смешивать с аммиачными удобрениями.

Обесфторенный фосфат получают из апатита путем обработки водяным паром смеси апатита с небольшим количеством песка при температуре 1400—1500°С. При этом разрушается кристаллическая решетка фторапатита и удаляется фтор, а фосфор переходит в усвояемую (лимоннорастворимую) форму.

Общее содержание P_2O_5 в обесфторенном фосфате 30—36%, в том числе лимоннорастворимой P_2O_5 28—32%. Удобрение негигроско-

ппчно, не слеживается.

Обесфторенный фосфат так же, как томасшлак и термофосфаты, нельзя смешивать с аммиачными удобрениями. Может применяться как основное удобрение на всех почвах. На дерново-подзолистых и черноземных почвах не уступает по эффективности суперфосфату.

Фосфоритная мука

Получается путем размола фосфорита до состояния тонкой муки. Фосфор в ней содержится в виде соединений типа апатита-фторапатита, гидроксил-апатита, карбонат-апатита и находится в форме трехзамещенного фосфата кальция $\mathrm{Ca_3(PO_4)_2}$. Эти соединения нерастворимы в воде и слабых кислотах и слабодоступны для большинства растений.

Фосфоритная мука негигроскопична, не слеживается, может смешиваться с любым удобрением, кроме извести. Туковая промышленность выпускает четыре сорта фосфоритной муки с общим содержанием P_2O_5 : высший сорт — 30%, 1-й сорт — 25, 2-й сорт — 22, 3-й сорт — 19%.

Для изготовления фосфоритной муки могут быть использованы низкопроцентные фосфориты, непригодные для химической переработки в суперфосфат.

Фосфоритная мука — самое дешевое фосфорное удобрение.

Эффективность фосфоритной муки зависит от состава фосфоритов, тонины помола, особенностей растений, свойств почвы и сопутствующих удобрений. Фосфориты желвакового типа, более молодые по геологическому возрасту и не имеющие хорошо выраженного кристаллического строения, доступнее для растений. При их размоле получается мука, пригодная для непосредственного удобрения. Фосфориты более древнего происхождения, имеющие кристаллическое строение (например, фосфориты Каратау), труднодоступны и поэтому непригодны для приготовления фосфоритной муки.

Эффективность фосфоритной муки увеличивается с повышением тонины помола. Чем тоньше частицы, тем больше их поверхность и соприкосновение с почвой и лучше происходит разложение фосфоритной муки под действием почвенной кислотности до усвояемых растениями соединений.

Значение тонины помола для повышения эффективности фосфоритной муки особенно велико на почвах, имеющих недостаточную кислотность для ее разложения, на оподзоленных и выщелоченных черноземах.

Лишь немногие растения (люпин, горчица, гречиха и отчасти горох и конопля) могут усваивать фосфор фосфоритной муки при нейтральной реакции почвенного раствора, т. с. без предварительного разложения ее под действием почвенной кислотности. Исследования Ф. В. Чирикова показали, что у растений, способных усваивать фосфорит, отношение $CaO: P_2O_5$ в золе больше 1,3, а у растений, неспособных усваивать, — меньше 1,3. Значительно большее потребление растениями кальция по сравнению с фосфором приводит к обеднению питательной среды кальцием, в результате чего облегчается переход $Ca_3(PO_4)_2$ в усвояемую форму. В лаборатории Д. Н. Прянишникова было установлено, что кислые выделения корней люпина сильно подкисляют почву, что оказывает растворяющее действие на фосфат.

Большинство растений — все злаки, лен, свекла, картофель—могут использовать фосфорит только при определенной кислотности почвы, достаточной для его разложения, поэтому на почвах с нейтральной реакцией (обыкновенные, мощные и южные черноземы) применение фосфоритной муки малоэффективно. На кислых дерновоподзолистых и серых лесных почвах, красноземах и выщелоченных черноземах она не уступает суперфосфату при внесении в удвоенной дозе (табл. 26).

Таблпца 26 Влияние суперфосфата и фосфоритной муки на урожайность зерна озимой ржи в зависимости от почв (по данным 1086 полевых опытов)

-	Прибавки зерна			
Почвы	от суперфосфа Р ₂ О ₅ на	ата (45 кг 1 га)	от фосфоритной муки (90 кг Р ₂ О ₅ на 1 га)	
	цс 1 га	%	цс 1 га	%
Подзолистые Серые лесные Черноземы:	3,5 2,6	38 23	3,1 2,1	33 19
деградированные и выщелоченные мощные обыкновенные	3,7 4,1 3,6	28 25 24	3,3 2,6 1,3	24 16 8

В разложении фосфоритной муки участвует не только актуальная, но и потенциальная кислотность. Под влиянием почвенной кислотности фосфоритная мука превращается в усвояемый растениями двухзамещенный фосфат кальция CaHPO₄. Исследования показали, что на почвах, имеющих гидролитическую кислотность меньше 2—2,5 м.-экв. на 100 г, разложение фосфоритной муки происходит слабо и эффективность ее очень низкая. Чем больше гидролитическая кислотность, тем выше эффективность фосфоритной муки. Однако

действие ее зависит не только от величины $^{\textit{HMF-3HB}}$ на 1002. кислотности почвы, но и от емкости поглощения (T) и степени насыщенности основанивенности основанивенности (V).

При одной и той же гидролитической кислотности действие фосфоритной муки тем выше, чем меньше емкость поглощения почвы (рис. 6).

Доза фосфоритной муки также устанавливается в зависимости от кислотности почвы. На сильно- и среднекислых почвах (рН 5,0 и меньше) можно вносить фосфоритную муку в той же дозе, что и суперфосфат, а на слабокислых почвах — в двойной и даже тройной дозе.

Фосфоритная мука применяется как основное удобрение, вносить ее лучше заблаговременно, с осени, и обязательно с глубокой за-

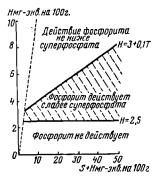


Рис. 6. Схема, показывающая зависимость действия фосфоритной муки от гидролитической кислотности (H) и емкости поглощения (T) почвы.

делкой под плуг. Наиболее эффективно внесение в пару под озимые культуры, а также под пропашные культуры — сахарную свеклу, картофель, кукурузу и др. Положительное действие фосфоритной муки продолжается в течение нескольких лет. Чем больше доза вносимой фосфоритной муки, тем выше и продолжительнее ее действие.

Для повышения эффективности фосфоритной муки большое значение имеют сопутствующие удобрения. Эффективность ее заметно повышается при внесении вместе с навозом и особенно при компостировании с навозом или кислым торфом. Хороший эффект дает внесение фосфоритной муки в основное удобрение под вспашку в сочетании с небольшой дозой гранулированного суперфосфата в рядки или гнезда при посеве.

КАЛИЙНЫЕ УДОБРЕНИЯ

Значение калия для растений и содержание его в почве

Калий является одним из основных, наряду с азотом и фосфором, необходимых элементов минерального питания. В отличие от азота и фосфора он не входит в состав органических соединений в растении, а находится в клетках растения в ионной форме в виде растворимых солей в клеточном соке и частично в виде непрочных адсорбционных комплексов с коллоидами цитоплазмы.

Калия содержится значительно больше в молодых жизнедеятельных частях и органах растения, чем в старых. При недостатке калия в питательной среде происходит отток его из более старых органов и тканей в молодые растущие органы, где он подвергается повторному использованию (реутилизации).

Физиологические функции калия в растительном организме весьма разнообразны. Он оказывает положительное влияние на физическое состояние коллоидов цитоплазмы, повышает их обводненность, набухаемость и вязкость, что имеет большое значение для нормального обмена веществ в клетках, а также для повышения устойчивости растений к засухе. При недостатке калия и усилении транспирации растения быстрее теряют тургор и завядают.

Калий положительно влияет на интенсивность фотосинтеза, окислительных процессов и образование органических кислот в растении, он участвует в углеводном и азотном обмене. При недостатке калия в растении тормозится синтез белка, в результате нарушается весь азотный обмен.

Недостаток калия особенно сильно проявляется при питании растений аммиачным азотом. Внесение высоких доз аммиачного азота при недостатке калия приводит к накоплению в растениях большого количества непереработанного аммиака, оказывающего вредное действие на растение. При внесении калийных удобрений аммиачный азот быстрее используется для синтеза аминоки лот и вредное действие его устраняется.

При недостатке калия задерживается превращение простых

углеводов (моноз) в более сложные (олиго- и полисахариды).

Калий повышает активность ферментов, участвующих в углеводном обмене, в частности сахаразы и амилазы. Этим объясняется положительное влияние калийных удобрений на накопление крахмала в клубнях картофеля, сахара в сахарной свекле и других корнеплодах.

Под влиянием калия повышается морозоустойчивость растений, что связано с большим содержанием сахаров и увеличением осмотического давления в клетках.

При достаточном калийном питаний повышается устойчивость растений к различным заболеваниям, например, у зерновых клебов — к мучнистой росе и ржавчине, у овощных культур, картофеля и корнеплодов — к возбудителям гнилей. Калий способствует развитию механических элементов, сосудистых пучков и лубяных волокон, поэтому положительно влияст на прочность стеблей и устойчивость растений к полеганию, на выход и качество волокна льна и конопли.

Внешине признаки калийпого голодания проявляются в побурении краев листовых пластинок — так называемом краевом запале. Края и кончики листьев, прежде всего нижних, приобретают «обожменный» вид, на пластинке появляются мелкие ржавые пятнышки. При недостатке калия листья теряют тургор, наблюдается также гофрированность, закручивание листьев, а у картофеля они покрываются характерным бронзовым палетом. Злаковые культуры при калийном голодании, особенно на легких и торфяных почвах, плохо кустятся, междоузлия стеблей укорачиваются, а листья, особенно старые, увядают, несмотря на достаточное количество влаги в почве.

При недостатие калия угнетается развитие репродуктивных органов — задерживается развитие бутонов и зачаточных соцветий, зерно получается щуплым, с пониженной всхожестью.

Явные внешние признаки калийного голодания проявляются у растений при снижении содержания в них калия в 3—5 раз против нормального.

Калия обычно всегда больше в вегетативных органах, чем в семенах, корнях и клубнях. Относительное содержание калия в листьях подсолнечника, табака, сахарной свеклы и других корнеплодов, картофеля составляет 4-6% на сухую массу, в соломе злаков -1-1.5, лубяных культур 0.5-1, капусте — до 0.5%. В семенах зерновых калия содержится около 0.5%, клубнях картофеля, корнеплодах -0.3-0.6% (см. табл. 6).

При высокой урожайности растения потребляют из почвы большое количество калия: зерновые — около 60-80 кг с 1 га K_2O , а картофель, сахарная свекла, овощные культуры — до 150-250 кг с 1 га. Из всех зольных элементов калий потребляется растениями в наибольшем количестве. Особенно много потребляют калия подсолнечник, картофель, свекла, капуста и другие овощные культуры, из зерновых — гречиха. Меньше потребляют калия зерновые культуры — рожь, пшеница, ячмень, овес.

Содержание калия (K₂O) в разных почвах колеблется от 0,5 до 3% и зависит от их механического состава. Больше содержится калия в глинистой фракции почвы. Поэтому тяжелые глинистые и суглинистые почвы богаче калием, чем песчаные и супесчаные. Очень бедны калием торфянистые почвы (0,03—0,05%). В большинстве культурных почв калия содержится около 2%, т. е. значительно больше, чем азота и фосфора.

Общий запас K_2O в пахотном слое почвы 50-75 т на 1 га, но основная часть калия (98—99%) находится в почве в виде соединений, нерастворимых и малодоступных для растений. По степени подвижности и доступности для растений содержащиеся в почве соединения калия можно подразделить на следующие основные формы.

1. Калий, входящий в состав прочных алюмосиликатных минералов, главным образом полевых шпатов (ортоклаза и др.) и слюд (мусковита, биотита и др.).

Калий полевых шпатов малодоступен для растений. Однако под влиянием воды и растворенной в ней углекислоты, изменений температуры среды и деятельности почвенных микроорганизмов прописходит постепенное разложение этих минералов с образованием растворимых солей калия. Калий мусковита и биотита более доступен растениям.

2. Калий обменный, поглощенный почвенными коллондами, составляет не более 0,8—1,5% общего содержания калия в почве. Ему принадлежит основная роль в питании растений. Хорошая доступность обменного калия для растений обусловлена способностью его при обмене с другими катионами легко переходить в раствор, из которого он усваивается растениями. При усвоении растениями; калия из раствора новые порции его переходят из поглощенного состояния в почвенный раствор. По мере использования обменного калия этот процесс все более замедляется, а остающийся калий все прочнее удерживается в поглощенном состоянии.

Содержание обменного калия может служить показателем степени обеспеченности почвы усвояемым калием. Обыкновенные и мощные черноземы и сероземы богаче обменным калием, чем дерновоподзолистые почвы, особенно песчаные и супесчаные.

3. Водорастворимый калий представлен различными солями, растворенными в почвенной влаге (нитраты, фосфаты, сульфаты, хлориды, карбонаты калия), которые непосредственно усваиваются растениями. Содержание его в почве обычно незначительное (около 1/10 от обменного), так как калий из раствора немедленно переходит в поглощенное состояние и потребляется растениями.

В некоторых почвах водорастворимый калий (а также калий внесенных в почву удобрений) может поглощаться в необменной форме, в результате резко снижается доступность его для растений. Необменная фиксация калия, как и иона аммония, наиболее сильно выражена в черноземах и сероземах, в особенности при их попеременном увлажнении и высушивании.

У зерновых культур калия содержится больше в соломе, чем в зерне, а у картофеля и свеклы — больше в ботве, чем в клубнях и корнях. Поэтому при более полном использовании растительных отходов в корм и на подстилку скоту большая часть калия с навозом снова возвращается в почву. Рациональное использование навоза имеет очень большое значение в обеспечении растений калием.

Для получения высоких урожаев сельскохозяйственных культур, особенно потребляющих большое количество калия, наряду с азотными и фосфорными удобрениями важная роль принадлежит минеральным калийным удобрениям. Наиболее эффективно их применение на почвах легкого механического состава и торфянистых почвах с низким содержанием калия.

Для производства калийных удобрений используют природные месторождения калийных солей. месторождения Крупнейшие Соликамское — представлено калийных солей: карналлитом $KCl \cdot MgCl_2 \cdot 6H_2O$ (верхний пласт) и сильвинитом nKCl + mNaClПрикарпатское (Западная Украина) — пред-(нижний пласт); преимущественно серпокислыми солями - шенитом K₂SO₄·2MgSO₄ K₂SO₄·MgSO₄·6H₂O, лангбейнитом И $KCl \cdot MgSO_4 \cdot 3H_2O$.

Крупные залежи калийных хлористых солей — сильвинита и карналлита обнаружены в Белоруссии (Полесье), где построен крупный Солигорский калийный комбинат. В Южном Прпуралье и Казахской ССР расположены месторождения полигалитов, состоящих из сернокислых солей калия, магния и нальция $K_2SO_4 \cdot MgSO_4 \cdot 2CaSO_4 \cdot 2H_2O$.

Содержание калия в удобрениях выражается в расчете на ${
m K}_2{
m O}$ (%).

В ассортименте выпускаемых в нашей стране калийных удобрений преобладают высококонцентрированные формы — хлористый калий (в 1975 г. свыше 80% от валового производства калийных удобрений) и 40%-ная смешанная калийная соль (14%). Сульфат калия производится в ограниченных количествах. Кроме того, выпускаются магнийсодержащие калийные удобрения — калийно-магниевый концентрат, калимагнезия и хлор-калий-электролит. Относительно небольшая часть калийных удобрений производится в виде комплексных туков. В качестве калийных удобрений в сельском хозяйстве используются также в ограниченных масштабах сырые калийные соли, цементная пыль и нефелиновые хвосты.

Сырые калийные соли и отходы промышленности

Сырые калийные соли, получаемые размолом природных калийных солей, характеризуются низким содержанием калия и большим количеством примесей, что значительно увеличивает расходы на транспортировку и внесение. Поэтому применять сырые калийные соли целесообразно лишь вблизи расположенных месторождений калийных руд. Из сырых калийных солей наиболее распространены сильвинит и каинит. Они содержат большое количество хлора (в сильвините более 4 кг хлора на 1 кг K_2 O), что также ограничивает их применение. Особенно чувствительны к избытку хлора табак, цитрусовые, виноград, лен, конопля, гречиха, картофель.

Сильвинит nKCl+mNaCl содержит 12-15% K_2O и 35-40% Na_2O . Выпускается в грубом размоле (размер кристаллов 1-5 мм и более). По внешнему виду представляет смесь крупных кристаллов белого, розового, бурого и синего цвета. Обладает незначительной гигроскопичностью, но при хранении во влажном помещении отсыревает, а при подсущивании слеживается.

Сильвинит целесообразно применять только в основное удобрение и вносить с осени под зяблевую вспашку. При этом значительная часть хлора вымывается в нижние слои почвы, а калий поглощается почвой.

Содержание большого количества натрия в сильвините (2,5 кг Na_2O на 1 кг K_2O) полезно для свеклы, кормовых и столовых корнеплодов, некоторых овощных культур.

Каинит $KCl \cdot MgSO_4 \cdot 3H_2O$ с большой примесью NaCl; содержит 10-12% K_2O , около 8% MgO, около 40% Cl и 35% Na₂O. Получается при размоле каинитовой или каинито-лангбейнитовой породы. Так же, как и сильвинит, применяется в качестве основного удобрения. Благодаря примеси $MgSO_4$ и NaCl внесение каинита под сахарную свеклу и другие корнеплоды, капусту, клевер дает хорошие результаты, особенно на легких почвах.

Цементная пыль содержит от 14 до 35% K₂O в форме карбонатов, бикарбонатов и сульфата калия. По своей эффективности при применении под чувствительные к избытку хлора культуры

(картофель, лен и гречиху) не уступает сульфату калия. Неблаго-приятные физические свойства (цементная пыль пылит и гигроскопична) можно устранить путем грануляции.

Промышленные калийные удобрения

Хлористый калий КСІ с небольшой примесью NaCl содержит от 58 до 62,5% К₂О. Получается из сильвинита путем отделения КСІ от NaCl, которое основано на различной растворимости этих солей с повышением температуры. В результате получают мелкокристаллический КСІ. При хранении сильно слеживается. Грануляция продукта улучшает физические свойства удобрения.

В настоящее время внедряют новые способы получения хлористого калия из сильвинита — флотационный и гидроциклонный, более простые, дешевые и одновременно позволяющие улучшить физические свойства удобрения, основанные на разделении КСІ и NaCl по плотности. При этом получается крупнокристаллической хлористый калий (размер кристаллов до 4—6 мм), который при хранении не слеживается. Хлористый калий — основное калийное удобрение. Может применяться под все культуры и на любых почвах.

40%-ные калийные соли получаются механическим смешиванием хлористого калия с тонкоразмолотым сильвинитом или каинитом. Содержание хлора и натрия в них больше, чем в хлористом калии. Калийные соли наиболее эффективны для сахарной свеклы и кормовых корнеплодов, которые положительно реагируют на натрий и малочувствительны к хлору. Для культур, чувствительных к избытку хлора, они менее пригодны, чем хлористый калий. Вносятся калийные соли в качестве основного удобрения с глубокой заделкой под плуг, лучше с осени под зябь.

Сульфат калия (сернокислый калий) — K_2SO_4 содержит 45—48% K_2O . Мелкокристаллическая соль сероватого двета, растворимая в воде. Получается путем выделения K_2SO_4 из природных сульфатных калийных солей (лангбейнитовой породы Прикарпатского месторождения). Производство его энергоемко и обходится дорого.

Сульфат калия имеет хорошие физические свойства, негигроскопичен, не слеживается. Может применяться на любых почвах и под все культуры, но особенно пригоден для культур, чувствительных к хлору (табак, виноград, цитрусовые и др.).

Kалимагнезия K_2SO_4 $MgSO_4$ содержит 29% K_2O и 9% MgO. Получается из природных сульфатных калийных солей

Прикарнатского месторождения путем перекристаллизации. Калимагнезия — хорошее удобрение для культур, чувствительных к хлору и потребляющих наряду с калием много магния (картофель, лен, клевер), особенно на бедных калием и магнием песчаных и супесчаных почвах.

Калий-электролит — отход, получаемый при производстве магния из соликамского карналлита, содержит от 32 до 45% $\rm K_2O$, кроме того, 8% $\rm MgO$, 8% $\rm Na_2O$ и до 50% $\rm Cl.$ В качестве основного удобрения при внесении с осени может применяться под все культуры.

Все калийные удобрения хорошо растворимы в воде. При внесении в почву они быстро растворяются и вступают во взаимодействие с почвенным поглощающим комплексом:

$$\begin{array}{l} (\Pi\Pi\mathrm{K})_{\mathrm{Ca}}^{\mathrm{Ca}} + 2\mathrm{KCl} & \stackrel{\longrightarrow}{\longleftarrow} (\Pi\Pi\mathrm{K})_{\mathrm{K}}^{\mathrm{K}} + \mathrm{CaCl_{2}}; \\ \mathrm{Ca} & \mathrm{K} \\ (\Pi\Pi\mathrm{K})_{\mathrm{Al}}^{\mathrm{II}} + 4\mathrm{KCl} & \stackrel{\longrightarrow}{\longleftarrow} (\Pi\Pi\mathrm{K})_{\mathrm{K}}^{\mathrm{K}} + \mathrm{AlCl_{3}} + \mathrm{HCl.} \\ \mathrm{K} \end{array}$$

Калий и другие катионы (Na+, Mg²+), входящие в состав калийных удобрений, поглощаются коллоидной частью почвы, а хлор остается в почвенном растворе и поэтому легко вымывается. В результате перехода калия в поглощенное состояние снижается его подвижность в почве и предотвращается вымывание, за исключением песчаных и супесчаных почв с малой емкостью поглощении. Обменно-поглощенный почвой калий удобрения хорошо доступен растениям. Коэффициент использования калия из минеральных удобрений 60-70%.

На почвах среднего п тяжелого механического состава калийные удобрения необходимо вносить с осени под зяблевую вспашку. При этом удобрение помещается в более влажный слой почвы, где развивается основная масса деятельных корней, и поэтому калий лучше усваивается растениями.

На легких почвах, особенно в районах с большим количеством осадков, калийные удобрения целесообразно вносить весной под культиватор.

Все калийные удобрения — физиологически кислые соли, но физиологическая кислотность у них меньше, чем у аммиачных удобрений, и проявляется она только при длительном применении их под культуры, потребляющие большое количество калия, — подсолнечник, гречиху, корнеплоды, картофель, овощи. Катионы К+ и Na+, содержащиеся в калийных удобрениях, поглощаясь почвой, вытесняют из нее эквивалентное количество катионов Са²+ или H+ и Al³+ (на кислых почвах). Вытеснение ионов H+ и Al³+ из почвы приводит к подкислению почвенного раствора и увеличению содержания в нем алюминия.

4 M 883 97

В более резкой форме подкисление наблюдается только при систематическом внесении высоких доз калийных удобрений на почвах, не насышенных основаниями.

Результаты многочисленных опытов показывают, что при правильном применении калийных удобрений каждый килограмм K_2O обеспечивает в среднем получение следующего количества дополнительной товарной продукции (в кг с 1 га): сахарной свеклы 35-40, картофеля 20-33, льноволокна 1,5, зерна озимых культур 3-5, яровых зерновых 2-3, клеверного или люцернового сена 20-30. Еще большая окупаемость единицы калия на легких и торфянистых почвах.

Зола -- калийно-фосфатно-известковое местное удобрение

Зола, получающаяся от сжигания дров или соломы, содержит калий, фосфор, кальций и ряд микроэлементов и является ценным калийно-фосфорным и известковым удобрением (табл. 27).

Таблица 27 Содержание (%) калия, фосфора и кальция в золе

Вид золы	K ₂ O	P ₂ O ₅	CaO
Зола лиственных пород » хвойных пород » соломы ржапой » соломы гречинной » подсолнечника » навоза, кизяка » торфа » каменного угля	10,0 6,0 16,2 35,3 36,3 11,0 1,0 2,0	3,5 2,5 4,7 2,5 2,5 5,0 1,2 1,0	30,0 35,0 8,5 18,5 18,5 9,0 20,0

Калий в золе содержится в виде углекислого калия K_2CO_3 , хорошо растворимого в воде. Эта форма калия лучшая для всех культур, особенно чувствительных к хлору. Наиболее богата калием зола гречихи и подсолнечника, а также ржаной соломы. В древесной золе содержится меньше калия, но значительно больше кальция, чем в золе соломы. Торфяная зола содержит мало фосфора и калия и используется преимущественно как известковое удобрение. Зола каменного угля не имеет практического значения как источник калия для растений.

Золу необходимо хранить в сухом помещении, так как вода выщелачивает из нее питательные вещества (прежде всего калий) и удобрительная ценность золы снижается.

Зола может применяться на всех почвах и под все культуры. Как удобрение, содержащее известь, наиболее высокий эффект дает на кислых почвах, особенно на бедных калием песчаных и супесчаных почвах и торфяниках.

Золу можно вносить в основное удобрение с осени под вспашку или весной под культивацию зяби, а также в подкормку под пропашные культуры (при междурядных обработках) и под озимые и многолетние бобовые травы (поверхностно рано весной).

КОМПЛЕКСНЫЕ УДОБРЕНИЯ

Разнообразие в уровне плодородия почв и особенности питания отдельных сельскохозяйственных культур обусловливают необходимость применять не только отдельно азот, фосфор или калий в виде соответствующих односторонних удобрений, но и два или три основных питательных элемента в определенном соотношении, а также микроэлементы. Значительная экономия труда и затрат на применение удобрений достигается в таких условиях применением смешанных и сложных удобрений.

Комплексные удобрения содержат два или три питательных элемента. Если они содержат два или три необходимых для питании растений элемента в составе одного химического сосдинения, то их называют сложными. Например, аммо- и диаммофос, метафосфаты кальция, калия или аммония, полифосфаты аммония и калия, карбоаммофосы.

К сложным удобрениям могут быть отнесены комбинированные удобрения, получаемые в едином технологическом процессе и содержащие в грануле основные элементы питания растений. Они производятся путем специальной обработки различных одно- и двух-компонентных удобрений или первичного сырья. К ним относятся нитрофоски, нитроаммофоски, фосфорно-калийные прессованные удобрения, сложно-смешанные гранулированные удобрения, жидкие сложные удобрения. Для них характерна высокая концентрация основных питательных элементов и отсутствие либо незначительное количество балластных веществ.

Основной ассортимент сложных удобрений в СССР включает аммо- и диаммофос, нитроаммофос, нитроаммофоски, нитрофоски и фосфорно-калийные сложные удобрения (табл. 28).

таблица 28 Основные комплексные удобрения, выпускаемые в СССР

Виды удобрений	Соотношение питатель- ных веществ (N:P ₂ O ₅ :K ₂ O)	Общее содержание пита- тельных веществ (%)		
Аммофос	1:4:0	56—63		
Диаммофос	1:2,5:0	66—68		
Нитроаммофоска	1:1:1	48—51		
Нитрофоска	1:1:1	33—35		
Нитроаммофос	1:1:0	48		
Фосфорно-калийные	0:1:1	50		

Осваивается производство метафосфатов калия и аммония, полифосфатов аммония, мочевино-аммофосов и других высококон-центрированных сложных удобрений.

Повышение концентрации питательных веществ в туках имеет огромное народнохозяйственное значение вследствие постоянного быстрого возрастания объема перевозок удобрений, транспортных расходов, а также расходов по хранению и внесению удобрений.

А м м о ф о с $NH_4H_2PO_4$ и диам м о ф о с $(NH_4)_2HPO_4$ получаются нейтрализацией фосфорной кислоты аммиаком. Удобре-

ния малогигроскопичны.

В аммофосе содержится 11-12% N и от 36 до 49% P_2O_5 , то есть отношение $N:P_2O_5$ в удобрении чрезмерно широкое, равно почти 1:4. В диаммофосе содержится 19-21% N и 49-53% P_2O_5 , соотношение $N:P_2O_5$ равно 1:2,5. Это высококонцентрированные удобрения, содержащие азот и фосфор в хорошо усвояемой растениями, преимущественно водорастворимой форме.

Удобрения могут вноситься в качестве основного удобрения и в подкормку под технические и овощные культуры. Так как азота в удобрениях содержится в 2,5—4 раза меньше, чем фосфора, то вносить их необходимо совместно с другими азотными удобрениями.

Нитрофосы и нитрофоски получают разложением апатита или фосфорита азотной кислотой, при этом получается дикальцийфосфат и нитрат кальция:

$$Ca_3(PO_4)_2 + 2HNO_3 = Ca(NO_3)_2 + 2CaHPO_4$$

Ввиду сильной гигроскопичности Са (NO₃)₂ такая смесь имеет плохие физические свойства. Для улучшения физических свойств удобрения избыток кальция выделяют из раствора, для чего нитрат кальция переводят в другие соединения. Это достигается различными способами. К смеси добавляют аммиак и серную кислоту или сульфат аммония — сульфатная схема (при этом образуется нитрат аммония и гипс), или аммиак и более дешевую угольную кислотукарбонатная схема. В первом случае удобрение состоит из дикальцийфосфата, фосфата аммония, нитрата аммония и гипса, а во втором — из дикальцийфосфата, нитрата аммония и карбоната кальция. Применяют также вымораживание нитрата кальция с последующей обработкой смеси аммиаком и серной кислотой. Получается удобрецие, состоящее из нитрата аммония, дикальцийфосфата. Такие удобрения называются нитрофосами. При добавлении к нитрофосам KCl получаются тройные удобрения, называемые нитрофосками. При этом образуются соли (NII, Cl и KNO3) менее гигроскопичные, чем нитрат аммония.

В нитрофосках азот и калий находятся в форме легкорастворимых соединений (NH_4NO_3 , NH_4Cl , KNO_3 , KCl), а фосфор в основном в виде нерастворимого в воде, но доступного для растений дикальцийфосфата и частично в форме водорастворимого фосфата аммония. В зависимости от технологической схемы процесса содержание в

нитрофосках водорастворимого и цитратнорастворимого фосфора может изменяться.

Общее содержание питательных веществ в нитрофосках может колебаться: N — от 10 до 17%, P_2O_5 — от 8 до 30% и K_2O-12 до 20%.

Нитрофоски выпускаются в гранулированном виде с размером гранул 2,5—4 мм или 1,65—2,8 мм.

Нитрофоски вносят в качестве основного удобрения до посева, а содержащие значительную часть фосфора в водорастворимой форме — также в рядки или лунки при посеве и в подкормку. Эффективность их практически такая же, как и эквивалентных количеств смеси простых удобрений.

Нитрофоски имеют определенное соотношение между азотом, фосфором и калием, а так как разные почвы отличаются по содержанию отдельных питательных веществ и потребность в них растений также неодинакова, то при внесении интрофосок (как и других сложных удобрений) часто возникает необходимость в некоторой корректировке, т. е. дополнительном внесении того илии иного недостающего элемента в виде простых удобрений.

Н и т р о а м м о ф о с ы (нитроаммофос и диаммонитрофос) получают при нейтрализации аммиаком смесей азотной и фосфорной кислот. Конечный продукт отличается высоким содержанием питательных веществ, и имеется широкая возможность для изменения отношения между N и P в их составе. Нитроаммофосы могут выпускаться с содержанием азота в интервале 10-30% и $P_2O_5-27-14\%$. При добавлении хлористого калия получают тройные комбинированные удобрения— нитроаммофоски с суммой питательных веществ от 44 до 62%. Питательные элементы, в том числе фосфор, содержатся в водорастворимой форме и легкодоступны растениям.

Карбоам мофосы. Их производство основано на способности мочевины образовывать комплексные соединения с фосфорной кислотой или аммо- и диаммофосом. Удобрения содержат 24-48% азота и 48-18% P_2O_5 . Для получения тройного комбинированного удобрения вводится хлористый калий. Суммарное содержание питательных веществ в карбоаммофосках достигает 60%.

Полифосфаты аммония получают при нейтрализации аммиаком полифосфорной кислоты. Полифосфорная или суперфосфорная кислота состоит из смеси орто-, пиро- и небольшого количества собственно полифосфорных кислот и содержит около 75% P_2O_5 . Полифосфат аммония содержит 17% азота, 60% P_2O_5 . На основе суперфосфорной кислоты могут производиться и другие твердые (например, полифосфат калия с содержанием 57% P_2O_5 и 37% K_2O) и жидкие высококонцентрированные сложные удобрения (состава 10% N, 34% P_2O_5 и др.).

Жидкие сложные удобрения получают при нейтрализации ортои полифосфорной кислот аммиаком с добавлением азотсодержащих растворов (мочевины, аммиачной селитры) и клористого калия. В нашей стране выпускаются жидкие сложные суспензированные удобрения состава 9-9-9 и 7-20-0 (указывается соответственно содержание N, P_2O_5 и K_2O , в %). По эффективности не уступают смеси твердых односторонних туков и сложным удобрениям типа нитроаммофоски. При использовании жидких сложных удобрений необходим комплекс специального оборудования для их перевозки, хранения и внесения. Применять их можно теми же способами, что и твердые: сплошным распределением по поверхности почвы перед вспашкой и культивацией, локально при посеве, а также в подкормки — при междурядной обработке пропашных или поверхностно на культурах сплошного сева.

Сложно-смешанные гранулированные удобрения готовятся смешиванием простых и сложных порошковидных удобрений (простого или двойного суперфосфата, аммиачной селитры или мочевины, хлористого калия) в специальном барабанном грануляторе с добавлением аммиака для нейтрализации свободной кислотности суперфосфата и фосфорной кислоты или аммофоса и диаммофоса для обогащения смеси фосфором. Выпускаемые в промышленном масштабе в нашей стране сложно-смешанные гранулированные удобрения имеют следующий состав: 10—10—10, 0—14—11, 10—10—15, 0—13—19.

В состав сложных твердых и жидких удобрений в процессе их производства могут быть введены и микроэлементы, а также гербициды и ядохимикаты.

СМЕШАННЫЕ УДОБРЕНИЯ

Смешанные удобрения, или тукосмеси, получаются при смешивании двух или трех простых удобрений. При этом достигается значительная экономия труда и времени на внесение удобрений по сравнению с раздельным их внесением, улучшаются физические свойства и повышается эффективность, так как удобрения более равномерно распределяются по полю и отдельные элементы питания находятся в общих очагах.

В зависимости от особенностей удобряемой культуры и свойств почвы тукосмеси могут быть различного состава. Однако не все удобрения можно смешивать друг с другом, так как в результате химических реакций между ними могут происходить нежелательные изменения — ухудшение физических свойств, или уменьшение растворимости, или потеря необходимых питательных веществ (рис. 7).

При смешивании суперфосфата и фосфоритной муки с калийными удобрениями, а также аммиачной селитры и сульфата аммония с преципитатом, фосфоритной мукой и калийными удобрениями не происходит каких-либо нежелательных изменений даже при длительном хранении указанных тукосмесей.

При смешивании аммиачных удобрений с известью, золой, томасшлаком и термофосфатами происходит потеря азота вследствие выделения аммиака, а при смешивании суперфосфата с известью

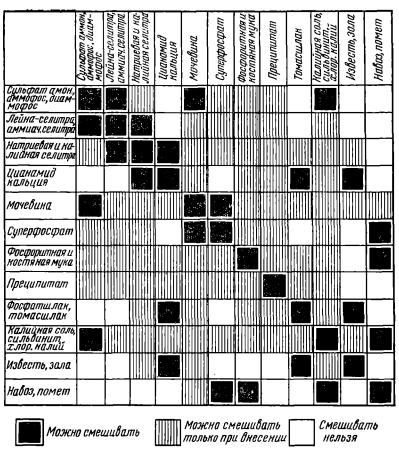


Рис. 7. Схема смешивания удобрений.

фосфор переходит в нерастворимую форму. Эти удобрения нельзя смешивать.

При сменивании сульфата аммония и аммиачной селитры с суперфосфатом происходит затвердевание смеси при хранении или получается сильно мажущаяся смесь, неудобная для рассева.

Для улучшения физических свойств смеси наиболее распространенных удобрений — аммиачной селитры, суперфосфата и хлористого калия — необходимо добавление небольшого количества (10—15%) нейтрализующих добавок (молотого известняка или доломита, фосфоритной муки, костяной муки). При этом сохраняется хорошая рассеваемость смеси даже при хранении ее в течение 4—5 месяцев.

Мочевину можно смешивать неред внесением со всеми формами фосфорных и калийных удобрений, а смесь ее с суперфосфатом сох-

раняет хорошие физические свойства и при заблаговременном смешивании.

Физические свойства и рассеваемость смесей резко улучшается при смешивании гранулированных удобрений, особенно при одина-ковых размерах гранул.

МИКРОУДОБРЕНИЯ

Для нормального роста и развития растений необходимы многие микроэлементы (В, Мп, Сu, Мо, Zn, Со и др.). В настоящее время в сельском хозяйстве применяют главным образом микроудобрения, содержащие бор, марганец, медь и молибден. Роль микроэлементов возрастает при интенсивном использовании макроудобрений и высоких урожаях сельскохозяйственных культур.

Борные удобрения. На формирование урожаев растения потребляют от 30 до 150 г бора с 1 га. Менее чувствительны к недостатку бора в почве зерновые культуры — рожь, пшеница, ячмень, овес. Значительно больше потребляют бора и более чувствительны к его недостатку сахарная свекла, кормовые корнеплоды, подсолнечник, картофель, лен, клевер, люцерна, горчица и некоторые овощные культуры.

Бор необходим растениям в течение всего периода их жизни. Недостаток бора в почве приводит к приостановке роста и заболеванию растений, снижению урожайности и ухудшению качества продукции.

Бор не может передвигаться из старых частей и органов растений в молодые, поэтому при его недостатке особенно страдают молодые растущие органы. Прежде всего отмирают точки роста стеблей, побегов и корней. При отмирании верхушечной точки роста происходит усиленное образование боковых побегов, которые вскоре также останавливаются в росте.

При недостатке бора свекла поражается заболеванием «гнилью сердечка», что приводит к дуплистости корня, а иногда и к полному его разрушению; лен поражается бактериозом, картофель — паршой. Эти заболевания полностью устраняются при внесении борных удобрений.

Бор оказывает существенное влияние на углеводный и белковый обмен и ряд других биохимических процессов в растении. При недостатке бора нарушается отток сахаров и крахмала из листьев в другие органы. В результате тормозится фотосинтез, уменьшается снабжение углеводами корневой системы и ухудшается ее развитие, а у бобовых растений ослабляется азотфиксирующая способность клубеньковых бактерий.

Бор играет важную роль в развитии репродуктивных органов. При недостатке бора уменьшается количество цветков, нарушается оплодотворение, завязи опадают, урожай семян резко снижается. Внесение борных удобрений сильно повышает урожай семян клевера и люцерны, льна, овощных и других культур.

В различных типах почв общее содержание бора колеблется от 1,5 до 50—60 мг на 1 кг почвы. Водорастворимые соединения бора составляют обычно 3—10% от общего его количества. Наиболее богаты бором засоленные почвы, особенно солончаки, а также сероземы. Значительно меньше содержат бора дерново-подзолистые почвы и красноземы.

Отчетливая потребность многих культур в борных удобрениях проявляется при содержании менее 0,1 мг подвижного бора на 1 кг почвы.

Необходимость внесения борных удобрений проявляется прежде всего на дерново-глеевых и темноцветных заболоченных почвах, а также на известкованных дерново-подзолистых и насыщенных основаниями почвах. Низким содержанием бора, как и других микроэлементов, отличаются песчаные и супесчаные почвы.

При внесении высоких доз азотных, фосфорных и калийных удобрений и наличии других условий, обеспечивающих хороший рост растений, потребность многих культур в борных удобрениях проявляется и на неизвесткованных дерново-подзолистых почвах.

Борные удобрения, содержащие бор в водорастворимой форме — бор нодатолитовая мука (2% бора) и бор магниевые удобрения (1—1,3% бора) применяются до посева (под культивацию) из расчета 0,5—1,5 кг бора на 1 га, при посеве в половинной дозе и в подкормки из расчета 200—300 г В на 1 га.

Осажденный боратмагния, содержащий 1,5% бора в усвояемой, но нерастворимой в воде форме, применяется только для внесения в почву до посева. Ворный суперфосфат простой (0,1—0,3% бора) и двойной (0,1—0,5% бора) лучше использовать для внесения в рядки при посеве и при посадке. Чистая соль бора—бура (11% бора) и борная кислота (17% бора) очень дороги и применяются в небольших дозах—100—200 г борной кислоты и 200—300 г буры— для предпосевной обработки 1 ц семян, а также внекорневых подкормок.

При внесении борных удобрений на почвах с низким содержанием доступных его форм урожайность корней сахарной свеклы возрастает на 25—30 ц на 1 га, зерна бобовых культур — гороха, вики и кормовых бобов — на 2—4 ц, семян клевера и люцерны — на 0,5—1 ц, семян овощных культур — на 30—50%.

Марганцевые удобрения. Количество марганца, выносимое с урожаем различных культур, колеблется от 100 до 500 г с 1 га. Физиологическое значение марганца связано с участием его в окислительновосстановительных реакциях в растительных клетках, с деятельностью окислительных ферментов-оксидаз. При недостатке марганца снижается интенсивность окислительно-восстановительных процессов и синтеза органических веществ в растении.

Марганец играет важную роль в процессах усвоении растениями аммиачного и нитратного азота, действуя в одном случае как окислитель, а в другом как восстановитель. При недостатке марганца

нарушается восстановление нитратного азота и происходит накопление нитратов в тканях растений.

Недостаток марганца чаще всего проявляется у свеклы, картофеля, овса. При этом снижается содержание хлорофилла в листьях, они приобретают хлоротичную пятнистость (частичный хлороз), интенсивность фотосинтеза ослабевает, овес поражается серой полосчатостью, которая выражается в появлении на листьях сначала серых пятен, а затем длинных полос вдоль жилок листа, листья буреют и отмирают. Аналогичное заболевание отмечено у пшеницы, ржи, проса, ячменя, кукурузы.

Недостаток марганца чаще всего проявляется на почвах с нейтральной или щелочной реакцией, особенно на песчаных и супесчаных, а также на торфяниках. Дерново-подзолистые кислые почвы характеризуются высоким содержанием подвижного (обменного) марганца, поэтому применение марганцевых удобрений на этих почвах может оказать отрицательное действие, так как избыток марганца вреден для растений. При известковании кислых почв внесение марганцевых удобрений может быть эффективным.

Марганцевые удобрения в настоящее время широко применяются главным образом под сахарную свеклу, кукурузу, картофель и овощные культуры, обеспечивая значительное повышение урожайности. Так, применение марганцевых удобрений на Украине обеспечивает получение прибавки урожайности сахарной свеклы 14—25 ц па 1 га при одновременном увеличении сахаристости корней на 0,11—0,33%, озимой пшеницы 3,2—4,7 ц на 1 га, капусты, картофеля и огурцов 40—50 ц на 1 га.

В качестве марганцевых удобрений используют сернокислый марганец, содержащий около 20% марганца, маргания и и рованный суперфосфат с содержанием марганца 2—3% и отходы марганцеворудной промышленности — марганцевые шламы, содержащие от 9 до 15% марганца в труднорастворимых формах. Марганцевые шламы можно вносить перед посевом под зяблевую вспашку или перепашку зяби (1,5—3 ц на 1 га), а также в подкормку (0,5—1 ц на 1 га). Марганизированный суперфосфат используется для припосевного внесения в рядки. Сернокислый марганец является растворимой солью и применяется для предпосевной обработки (намачивания или опудривания) семян (50—100 г на 1 ц семян) и для внекорневой подкормки (0,05% раствор соли при расходе 300—500 л на 1 га).

Медные удобрения. Вынос меди с урожаями сельскохозяйственных культур измеряется десятками граммов с гектара. Медь входит в состав окислительных ферментов и играет важную роль в окислительных процессах, происходящих в растении. Она имеет также большое значение для углеводного и белкового обмена растений и для образования хлорофилла в листьях.

При недостатке меди наблюдается пожелтение листьев, связанное с разрушением хлорофилла. У зерновых культур недостаток

меди вызывает специфическое заболевание «болезнь обработки» пли «белую чуму». Растения становятся бледно-зелеными, начинают усиленно куститься, кончики листьев белеют, зерно получается щуплым. При сильном медном голодании колосья вовсе не образуются, стебель постепенно засыхает.

Особенно бедны медью вновь освоенные низинные торфлники и заболоченные почвы с нейтральной или щелочной реакцией, а также дерново-глеевые почвы. Применение медных удобрений на этих почвах — непременное условие получения высоких урожаев. Зерновые культуры на торфяниках без медных удобрений дают пичтожную урожайность — 2—3 ц зерна с 1 га, а при внесении их урожайность повышается до 20—25 ц с 1 га.

Хорошо отзываются на медь также лен, конопля, сахарная свекла, подсолнечник, горчица, горох, тимофеевка, менее отзывчивы кормовая и столовая свекла, турнепс, морковь. Медные удобрения положительно влияют и на качество продукции: увеличивается содержание белка в зерне, сахара в корнеплодах, витамина С в плодах и овощах. Наиболее устойчивы к недостатку меди картофель, а также капуста и рожь.

В качестве медных удобрений применяют главным образом отходы сернокислотной промышленности — п и р и т п ы е о г а рк и, содержащие 0.3-0.6% меди, а также м е д н ы й к у п о р о с — ${\rm CuSO_4\cdot 5H_2O}$, содержащий около 25% меди. Пиритпые огарки следует вносить с осени под зяблевую вспашку (5—7 ц на 1 га) или весной не раньше чем за 10-15 дней до посева. Медный купорос может применяться для внекорневой подкормки и для предпосевной обработки (намачивания) семян.

Для подкормки растворяют 250—500 г медного купороса в 300—500 л воды. Расход медного купороса для предпосевной обработки 50—100 г на 1 ц семян.

Молибденовые удобрения. Содержание молибдена в растениях составляет тысячные или десятитысячные доли процента на сухое вещество. Больше его содержится в семенах, особенно бобовых, растений. Богаты молибденом клубеньки бобовых. Молибден играет важную роль в фиксации азота воздуха клубеньковыми и свободноживущими азотфиксирующими бактериями. При недостатке молибдена клубеньки на корнях бобовых развиваются слабо, азотфиксирующие бактерии не могут нормально фиксировать атмосферный азот.

Большая роль принадлежит молибдену в азотном обмене у растений и синтезе белков при усвоении ими нитратного азота. При недостатке молибдена в тканях растений накапливается избыточное количество нитратов, восстановление их задерживается, в результате нарушается нормальный ход азотного обмена. При внесении нитратных удобрений потребность растений в молибдене выше, чем при внесении аммиачных удобрений. Наиболее чувствительны к недостатку молибдена и значительно повышают урожай при внесении молибденовых удобрений бобовые, некоторые крестоцветные растения, а также сахарная свекла. Недостаток молибдена приводит к

появлению характерных признаков страдания растений от дефицита азота, листья приобретают бледную окраску, рост растений замедляется.

Валовое содержание молибдена в почвах колеблется от 0,2 до 10 мг на 1 кг. Подвижных форм молибдена очень мало в кислых почвах, так как при кислой реакции он находится в недоступной для растений форме. Известкование кислых почв увеличивает подвижность молибдена в почве и его доступность для растения и уменьшает или полностью устраняет потребность в молибденовых удобрениях.

В качестве молибденовых удобрений применяются молибдена; деновокислый аммоний, содержащий 54% молибдена; 35%-ный технический молибдат аммония-натрия; молибденизированный суперфосфат, содержащий 0,2% молибдена, и отходы промышленности, содержащие 0,3—4% молибдена.

Молибденовые удобрения редко вносятся в почву до посева, более экономично их применение в рядки при посеве (в виде молибденизированного суперфосфата), для внекорневой подкормки путем опрыскивания растений (100—200 г Мо на 1 га) на ранних фазах развития. Хорошие результаты дает также предпосевная обработка семян раствором солей молибдена или опудривание семян (25—50 г Мо на гектарную норму семян). Наиболее эффективно применение молибдена под бобовые и овощные культуры на кислых дерновоподзолистых, серых лесных почвах и выщелоченных черноземах. В этих условиях применение молибдена повышает урожайность гороха на 3—4 и на 1 га, сена клевера и вики соответственно на 8—10 и 7-9 ц на 1 га, семян клевера — на 0.5-1 ц на 1 га, моркови на $70\!-\!80$ ц на 1 га, салата, редиса и капусты $-\!-$ на $20\!-\!30\,\%$. Под влиянием молибдена значительно улучшается и качество продукции: увеличивается содержание белка в зерне и сене бобовых культур, витаминов и сахара в овощах.

При недостатке в почвах доступных форм бора, марганца, меди и молибдена, в определенных условиях также кобальта, йода, ванадия и других микроэлементов, сельскохозяйственные культуры дают низкую и неполноценную по своему качеству продукцию. Применение соответствующих микроудобрений значительно повышает урожайность и качество растениеводческой продукции. Под действием микроэлементов у многих растений повышается сахаристость, увеличивается содержание крахмала или белка, витаминов и жиров. Возрастает также устойчивость растений к засухе, высоким и низким температурам, снижается их поражаемость вредителями и болезнями. Значение микроэлементов выходит далеко за пределы растениеводства, поскольку с недостатком микроэлементов часто связаны многие заболевания животных и людей.

Недостаток в почве отдельных микроэлементов может быть обнаружен по появлению специфических признаков голодания растений. Однако в практике сельского хозяйства чаще приходится встречаться с менее острым недостатком микроэлементов, когда четких внешних признаков страдания растений не наблюдается, но рост, развитие растений угнетаются. Потребность в применении микроудобрений может быть оценена по результатам химического анализа почв на содержание доступных для растений форм микроэлементов (табл. 29).

Таблица 29 Оценка почв по содержанию в них микроэлементов (по Г. Я. Ринкису)

		Содержание микроэлементов (мг на 1 кг почвы)						
Оценка почв	В (в вод- ной вы- тяжке)	Cu (B 1 11. HCl)	Mn (B 0,1 11. H ₂ SO ₄)	Мо (в окса- латиой вы- тажке)	Zn (B 1 II. KCl)	Co (в 1 п. HNO _з)		
Очень бедиые Бедиые Средине Богатые Очень богатые	0,1 0,1-0,2 0,3-0,5 0,6-1,0		1 1—10 20—50 60—100 100	0,05 0,05-0,15 0,20-0,25 0,3-0,5 0,5	$\begin{vmatrix} 0,2\\0,2-1,0\\2-3\\4-5\\5 \end{vmatrix}$	0,2 0,2-1,0 1,5-3,0 4-5 5		

Наиболее надежно о необходимости внесения микроудобрений в конкретных почвенно-климатических условиях можно судить по результатам полевых опытов.

Более высокая эффективность применения микроудобрений, как правило, наблюдается при хорошей обеспеченности растений основными элементами питания — азотом, фосфором и калием. В то же время внесение необходимых микроэлементов значительно повышает действие азотных, фосфорных и калийных удобрений. Микроэлементы обеспечивают лучшее использование растениями питательных элементов из почвы и минеральных удобрений.

Экономическая эффективность применения микроудобрений в условиях недостатка доступных форм микроэлементов в почвах весьма высокая. Так, в Латвийской ССР, где использование микроудобрений проводится в широких масштабах, установлено, что при сумме затрат на применение микроудобрений, не превышающих 4 руб. на 1 га, размеры стоимости дополнительной прибавки урожайности составляли: сахарной свеклы — 115, картофеля — 92 и зерна гороха — 42 рубля с 1 га.

В настоящее время в СССР микроудобрения вносятся на площади около 5 млн. га и ареал их применения постояню расширяется.

ОРГАНИЧЕСКИЕ УДОБРЕНИЯ

К органическим удобрениям относятся навоз, торф, навозная жижа, птичий помет, фекалий, различные компосты. Органические удобрения содержат азот, фосфор, калий, кальций и другие элементы питания растений, а также органическое вещество, которое улучшает физические свойства почвы, повышает ее поглотительную способность и буферность и положительно влияет на развитие микрооргапизмов в почве.

Содержание азота, фосфора и калия в органических удобрениях по сравнению с минеральными невысокое, поэтому их не перевозят на далекие расстояния, а используют на месте их получения и называют местными удобрениями.

HABO3

Навоз — важнейшее органическое удобрение, в котором содержатся все питательные вещества, необходимые растениям. В связи с этим его называют полным удобрением.

В настоящее время колхозы и совхозы нашей страны ежегодно применяют более 600 млн. т. навоза. В такой массе навоза содержится 3 млн. т. N, 1,5 млн. т ${\rm P_2O_5}$ и 3,6 млп. т ${\rm K_2O}$. Это количество питательных веществ эквивалентно 31,5 млн. т минеральных удобрений, в том числе: 15 млн. т сульфата аммония, 7,5 млн. т суперфосфата и 9 млн. т 40%-ной калийной соли.

При лучшей организации накопления и полном использовании навоза применение его может быть увеличено в ближайшие годы до 700 млн. т, которые по содержанию питательных веществ эквивалентиы 37 млн. т минеральных удоб-

рений.

Несмотря на непрерывно расширяющееся производство минеральных удобрений, навоз и сейчас является важнейшим источником азота, фосфора и калия как по количеству питательных веществ, содержащихся в нем, так и по их дешевизне. Указывая на громадное значение навоза, академик Д. Н. Прянишников писал: «Как бы ни было велико производство минеральных удобрений в стране, навоз никогда не потеряет своего значения, как одно из главнейших удобрений в сельском хозяйстве».

Многочисленные опыты научно-исследовательских учреждений и практика передовых хозяйств показывают, что повышение урожай-

ности сельскохозяйственных культур, особенно в Нечерноземной зоне, в значительной степени зависит от количества и качества применяемого навоза, правильного его хранения и использования.

Навоз не только повышает урожайность той культуры, под которую вносится, но и оказывает значительное последействие, влияя на урожайность трех-четырех последующих культур. Опыты показывают, что каждая тонна впесенного в почву навоза дает за 4—5 лет суммарную прибавку урожайности сельскохозяйственных культур, равную в пересчете на зерно 1 ц.

Состав навоза

Навоз состоит из твердых и жидких выделений животных и подстилки (если она применяется). Состав и удобрительная ценность его зависят от вида животных, корма, качества и количества подстилки и способа хранения.

Количество и соотношение твердых и жидких выделений значительно различается у отдельных видов скота. Так, у лошадей твердых выделений в 3,5 раза, а у овец и крупного рогатого скота в 2,5 раза больше, чем жидких, а у свиней количество мочи в 2 раза больше, чем кала. Самый сухой навоз — конский, он быстрее разогревается и разлагается, его называют «горячим».

Твердые и жидкие выделения животных неравнопенны по составу и удобрительным качествам. Большая часть фосфора, выделяемого из организмов животных, находится в кале, а почти весь калий и от 1/2 до 2/3 азота — в жидких выделениях. Азот и фосфор в твердых выделениях содержится в составе органических соединений и переходит в доступную для растений форму после их минерализации. В жидких выделениях элементы питания представлены в растворимой и легкодоступной форме.

На состав и соотношение твердых и жидких выделений животных влияет количество и качество потребляемых кормов. Чем больше скармливается сочных кормов и выше их влажность, тем больше жидких выделений. Чем корм переваримее, тем меньше сухого вещества содержится в твердых выделениях и больше в моче. При увеличении количества концентрированных кормов возрастает содержание в навозе азота и фосфора. В среднем из потребляемого животными корма в навоз переходит около 40% органического вещества, 50% азота, 80% фосфора и до 95% калия.

Для увеличения выхода навоза и повышения его качества большое значение имеет вид и количество подстилочного материала. Подстилка улучшает физические свойства навоза, впитывает мочу и образующийся при ее разложении аммиак и, таким образом, уменьшает
потери азота. Особенно важное значение имеет способность подстилки поглощать жидкости и газы. Содержание в ней азота и зольных,
веществ также сказывается на качестве навоза (табл. 30).

В качестве подстилки применяют солому злаковых, торф, торфяную крошку, реже — древесные стружки и опилки. Наиболее ценным подстилочным материалом считается торф, который содер-

Состав свежего навоза (%) в зависимости от вида животных и подстилки

Составные части		Соломенна	Торфяная под- стилка			
навоза	коровы	лошади	овцы	СВИНРИ	коровы	лошади
Вода Органическое вещество	77,3	71,3	64,6	72,4	77,5	67,0
	20,3	25,4	31,8	25,0	—	—
Азот общий Азот аммиачный Фосфор (P_2O_5) Калий (K_2O) Калий (CaO)	0,45	0,58	0,83	0,45	0,60	0,80
	0,14	0,19		0,20	0,18	0,28
	0,23	0,28	0,23	0,19	0,22	0,25
	0,50	0,63	0,67	0,60	0,48	0,53
	0,40	0,21	0,33	0,18	0,45	0,44

жит азота в 3—4 раза больше, чем солома, и обладает значительной поглотительной способностью — почти полностью поглощает мочу и образующийся при ее разложении аммиак. Поэтому навоз на торфяной подстилке содержит больше общего и аммиачного азота, чем навоз на соломенной подстилке, и эффективность его, особенно на дерново-подзолистой почве, значительно выше.

Для подстилки лучше всего использовать слаборазложившийся верховой (моховой) торф с влажностью 30—40% (табл. 31). При ис-

Таблица 31 Средние суточные нормы подстилки (кг) па одну голову скота

	Вид подстилки			
Виды животных	солома элаков	торф моховой слаборазложившийсл		
Крупный рогатый скот Лошади Овцы Свиньи откармливаемые	4-6 3-5 0,5-1 1-2	5—8 3—5 1—1,5 1,5—2		

пользовании на подстилку низинного, более разложившегося торфа его применяют в удвоенном количестве и во избежание загрязнения животных застилают сверху слоем соломы.

—

Солому в качестве подстилки чаще всего применяют в виде резкирдлиной 8—15 см. В этом случае она больше впитывает мочи, равномернее увлажняется, навоз получается более однородный, плотнее укладывается в штабель и при хранении меньше теряет азота, его можно равномернее распределить по полю. Потеря азота из такого навоза уменьшается почти в 2 раза, а эффективность его повышается примерно в 1,5 раза (табл. 32).

Влилние резки соломенной нодетилки на качество коровьего навоза и его эффективность (данные ВИУА)

Количество соломенной подстилки в сутки	Потери N ва 3 месяца хранения навоза (%)	Урожай картофеля (ц с 1 га) при вне- сении 20 т навоза на 1 га	Прибавка уро- жая картофеля
4 кг цельной соломы	20,6	281,4	66,9
4 кг резки длиной 10 см	12,8	312,7	100,2

Подстилка влияет не только на качество навоза, но и увеличивает его выход. При увеличении дозы соломенной подстилки с 2 до 6 кг накопление навоза увеличивается на 30—40% и в 3—4 раза уменьшаются потери азота.

При использовании на подстилку мелкой стружки и древесных опилок получается навоз плохого качества. Он имеет низкое содержание азота и медленно разлагается.

Количество получаемого в хозяйстве навоза зависит от вида животных, общего поголовья скота, продолжительности стойлового периода, количества кормов и применяемой подстилки. Количество навоза, получаемого в хозяйстве, можно подсчитать по формуле $\left(\frac{K}{2}+II\right)\cdot 4$, где K — сухое вещество корма, II — количество подстилки, 4—коэффициент (масса сырого навоза в 4 раза больше, чем масса сухого вещества корма).

Общее количество навоза можно определить также, исходя из поголовья и количества навоза, получаемого от одной головы скота в год с учетом потерь при работе и на пастбище (табл. 33).

Таблица 33 Среднее количество навоза (т), получаемого от одной головы скота за год

Продолжительность стойлового периода	Крупный рогатый скот	Лошади	Овцы	Свиньи
От 220—240	8—9	6—7	0,8—0,9	1,5—2
От 180—220	6—7	4—5	0,6—0,7	1,0—1

При ограниченном использовании подстилочного материала (до 1 кг на корову в сутки) получается полужидкий навоз с влажностью (до 85—87%. Накопление смеси твердых и жидких выделений животных при небольшом количестве подстилки позволяет полностью межанизировать очистку животноводческих помещений, однако полужидкий навоз пеудобен для транспортировки и внесения. Потери азота из такого навоза даже при хранении в закрытых навозохра-

нилищах достигают больших размеров, и перед его внесением в почву требуется предварительное компостирование с торфом или землей.

При бесподстилочном содержании животных получаемый жидкий навоз представляет собой смесь кала, мочи и небольшого количества воды, попадаемой в навоз при уборке помещения, мытье кормушек, из автопоилок. Такой навоз крупного рогатого скота имеет влажность 90%, свиней — до 95—97%. Он обладает текучестью и легко поддается перекачке по трубам самотеком и с помощью насосов.

Бесподстилочное содержание скота применяется на крупных специализированных фермах и животноводческих комплексах.

Выход и качество жидкого навоза зависят от вида и возраста животных, типа кормления, продолжительного откорма или стойлового содержания, технологии накопления (табл. 34).

Таблица 34 Состав жидкого навоза

Состав (% на сырое вещество)	Крупный рогатый скот	Свиньи
Зола	88,5	89,5
Сухое вещество	11,5	10.5
Органическое вещество	8,6	10,5 $5,2$
Азот общий	0,40	0,50
Азот аммиачный	0,25	0,35
P осфор (P_2O_5)	0,20	$0,25 \\ 0,24*$
Калий (K ₂ O)	0,45	0,24*
Магний (MgO)	0,10	0,10
Кальций (СаО)	0,15	0,20
Натрий (Na₂O)	0,12	0,10

^{*} При кормлении концентратами.

Выход жидкого навоза на крупных животноводческих комплексах составляет при влажности 90%: для комплексов на 2 тыс. коров—около 40 тыс. т в год, на 10 тыс. бычков — около 100 тыс. т, 100 тыс. свиней — около 100 тыс. т. Использование такого количества жидкого навоза возможно только при полной механизации и автоматизации всех процессов транспортировки, хранения и применения.

При разбавлении водой навоза до 95%-ной влажности объем его увеличивается в 2 раза, а до 98%-пой — в 5 раз. Применение системы гидросмыва приводит к разбавлению навоза водой в 4—6 раз, соответственно возрастает потребность в емкостях для хранения и транспортных средствах для вывозки и внесения навоза. По мере разбавления водой в силу этого утрачивается экономическое преимущество бесподстилочного содержания животных по сравнению с традиционным подстилочным. Разбавление жидкого навоза водой целе-

сообразно лишь непосредственно перед внесением его с поливом или орошепием. Если жидкий навоз не разбавлен, то при разделении его в осадок попадает 20—25% питательных веществ, а основное их количество остается в жидкой фракции. Технология применения жидкого навоза должна предусматривать накопление и использование не только твердой, но и обязательно жидкой фракции.

Хранение навоза

Качество навоза в большой степеци зависит от способа его хранения.

При хранении навоза под влиянием микроорганизмов происходит разложение азотистых и безазотистых органических веществ. Мочевина и другие органические азотистые соединения, содержащиеся в жидких выделениях животных, превращаются в газообразный аммиак, являющийся главным источником потерь азота из навоза. Мочевина под действием фермента уреазы, выделяемого уробактериями, превращается в углекислый аммоний, который легко распадается на аммиак, углекислоту и воду:

$$CO(NH_2)_2 + 2H_2O = (NH_4)_2CO_3;$$

 $(NH_4)_2CO_3 = 2NH_3 + CO_2 + H_2O.$

Азотистые соединения твердых выделений и подстилки состоят преимущественно из белковых веществ и разлагаются с образованием аммиака очень медленно. Безазотистые органические вещества навоза представлены в основном клетчаткой и другими легко разлагающимися органическими соединениями (сахара, крахмал, пентозаны, пектины, органические кислоты). Чем более соломистый навоз, тем больше в нем содержится безазотистых органических веществ. При доступе воздуха разложение их происходит до углекислоты и воды и сопровождается повышением температуры навоза до 50—70°С. При анаэробных условиях клетчатка разлагается с образованием углекислоты и метана.

При большем содержании в навозе легкоразлагающихся органических веществ и лучшем доступе воздуха разложение его протекает более интенсивно. В зависимости от условий хранения разложение навоза происходит с различной интенсивностью и навоз получается разного качества. Существуют плотный, рыхлый и рыхлоплотный способы хранения навоза.

При плотном, или холодном, способе хранения навоз укладывают слоями шириной 3—4 м и немедленно уплотняют. Штабель делают высотой 1,5—2 м и длиной в зависимости от количества навоза. Сверху его покрывают торфом или соломой. Температура в таком плотном уложенном штабеле бывает невысокой (15—30°С), доступ воздуха в него ограничен, свободные от воды поры заняты углекислотой, в результате чего микробиологическая деятельность затрудняется, поэтому разложение органического вещества протекает медленно.

Свежий навоз становится нолуперепревшим через 3—5 месяцев. Потери азота при таком способе транения сравнительно небольшие— не более 10—11%. Навоз содержит значительное количество аммиачного азота.

Условия плотного хранения навоза создаются и при беспривязном содержании скота на глубокой несменяемой подстилке. При этом навоз ежедневно разравнивают, а сверху настилают свежую подстилку из расчета 3—4 кг на голову. Навоз уплотняется животными, и процесс разложения его замедляется. Вывозят навоз из помещения один-два раза в год непосредственно в поле или укладывают плотно в навозохранилище.

При рыхлом хранении навоза без уплотнения происходят наибольшие потери органического вещества и азота, навоз разлагается неравномерно, удобрительное качество его снижается.

При рыхло-плотном хранении навоз укладывают сначала рыхлым слоем высотой 0,8—1 м. При такой укладке микробиологические процессы протекают в условиях хорошего доступа воздуха, происходит интенсивное разложение органического вещества навоза, температура поднимается до 60—70°С и наблюдаются значительные потери азота. После этого навоз тщательно уплотняют, при этом доступ воздуха внутрь штабеля прекращается, температура падает до 30—35°С, аэробные условия разложения сменяются анаэробными, потери органического вещества и азота уменьшаются. На первый слой навоза накладывают второй слой, затем третий до тех пор, пока высота штабеля не достигнет 2—3 м. В плотном состоянии навоз хранится до вывозки в поле.

При этом способе хранения разложение навоза значительно ускоряется, в нем погибают семена сорных трав и возбудители кишечно-желудочных заболеваний, но потери органического всщества и азота из навоза значительно увеличиваются (табл. 35).

Таблица 35 Потери органического вещества и азота при разных способах хранения навоза (% от содержания их в свежем навозе)

Способ храненвя навоза	Соломенная потери при		Торфяная подстилка, потери при хранении		
	органичесного вещества	азота	орган иче ского вещества	азота	
Рыхлый Рыхло-плотный Плотный	32,6 24,6 12,2	31,4 21,6 10,7	40,0 32,9 7,0	25,2 17,0 1,0	

Рыхло-плотный способ хранения может быть рекомендован только в случае, если применяется большое количество подстилки и навоз получается соломистый, а вносить его нужно весной под яровые

и пропашные культуры или когда необходимо получить быстро перегной, а также при необходимести обеззараживания навоза.

Потери азота при разложении навоза во время хранения значительно сокращаются при добавлении к нему (при укладке в штабеля) 3% от веса фосфоритной муки. При компостировании с фосфоритной мукой навоз обогащается фосфором, разложение органического вещества ускоряется, в компосте накапливается значительное количество гумусовых веществ.

Навозно-фосфоритный компост вполне созревает в течение 2—3 месяцев в весенне-летнее время и за 3—4 месяца зимой. В процессе разложения навоза микроорганизмами фосфор фосфоритной муки переходит в доступную для растепий форму. Одновременно происходит связывание выделяющегося из навоза аммиака и резко сокращаются его потери.

Внесение навозно-фосфоритных компостов дает более высокий эффект, чем внесение эквивалентных количеств навоза и фосфоритной муки раздельно пли в смеси, по без предварительного их компостирования (табл. 36).

Таблица 36 Эффективность навозно-фосфоритпых компостов на дерново-подзолистой суглинистой почве (данные ВИУА)

_	Kap	тофель	Яровая пшеница (последействие)		
Виесение удобрения	урожай (ц с 1 га)	прибавка уро- жая (ц па 1 га)	урожа й (ц с 1 га)	прибавка уро- жая (ц на 1 га)	
Без навоза Навоз 15—20 т на 1 га Фосфоритная мука Навоз + фосфоритная мука без компостирования	224 307 272 314	83 48 90	12,1 14,7 13,2 16,5	2,6 1,1 4,4	

Для хранения навоза в каждом хозяйстве необходимо иметь навозохранилища с жижесборником.

Навозохранилища бывают котлованного и наземного типа. В северных районах при высоком уровне грунтовых вод навозохранилища устраиваются на поверхности земли с боковыми бортами из камня, кирпича или других материалов. В южных и юго-восточных засушливых районах, где навоз быстро подсыхает, рекомендуется устройство навозохранилищ котлованного типа глубиной до 1 м. Навозохранилища располагают на возвышенных местах на расстоянии не менее 50 м от скотных дворов и свыше 200 м от жилых построек. Основное требование при постройке навозохранилища — устройство прочного и водонепроницаемого дна (лучше всего цементированного или асфальтированного). По длинным сторонам навозо-

хранилища выкапываются водоотводные канавы. По узким сторонам или в углах навозохранилища устранвают колодцы-жижесборники с водонепроницаемыми дном и стенами и герметичной крышкой. Для обеспечения стока жижи в сборники дно навозохранилища должно иметь уклон 2—3° в направлении к колодцам. Емкость жижесборников зависит от объема навозохранилища — на 100 м² площади должно приходиться около 2 м³ емкости для сбора жижи. С обоих концов на всю ширину навозохранилища делаются мощеные или асфальтированные пологие въсзд и выезд, а вдоль всего навозохранилища — проезжая дорога шириной 2,5 м. Размеры навозохранилища определяются количеством и видом скота, продолжительностью хранения, а также тем, какая часть навоза может вывозиться непосредственно на поля, минуя навозохранилище (табл. 37).

Таблица 37 Площади (на одно животное) для хранения навоза в течение 2,5—3 месяцев

Вид животных	Площадь (м²)
Крупный рогатый скот (вэрослый)	2,0-2,50
Рабочие лошади	1,4-1,75
Молодинк крупного рогатого скота и лошадей	1,0-1,25
Свиньи (в среднем)	0,4-0,50
Овцы (в среднем)	0,2-0,30

Типовое навозохранилище, рассчитанное на хранение навоза от 100 коров, получаемого в течение 2,5—3 месяцев (около 300 т), имеет следующие размеры: ширина 9 м, длина 21, высота или глубина 1 м.

Вопрос о типе навозохранилища решается в зависимости от местных условий. При котлованном хранении навоз транспортируется из скотного двора по подвесной дороге, но затрудняется последующая погрузка для вывоза в поле. При наземном устройстве навозохранилища, наоборот, упрощается работа по погрузке и вывозке навоза из навозохранилища.

Весь навоз, который нельзя сразу вывести в поле и сложить там в штабеля, необходимо складывать в навозохранилище. Навоз следует укладывать вдоль длинной стороны навозохранилища большими правильными штабелями шириной 2—3 м, тесно примыкающими друг к другу. При такой укладке потери азота меньше и навоз разделяется по степени разложения: в одной стороне навозохранилища навоз более разложившийся, в другой — менее. Штабеля покрывают сверху торфом или землей слоем 15—20 см.

В поле навоз вывозят зимой. Здесь его необходимо укладывать в большие, хорошо уплотненные штабеля (по 40-60 т) шириной 3-4 м и высотой 1.5-2 м.

Для закладки штабеля выбирают высокое, сухое место, очищают его от снега и для поглощения жижи, которая выделяется при разложении навоза, укладывают слой (20—30 см) торфа или соломенной резки. Чтобы навоз не замерзал, укладку каждого штабеля необходимо заканчивать в один-два дня. Уложенный в штабель навоз с боков и сверху тщательно оправляют, чтобы стенки были отвесны, а верх имел покатость для стока воды. Сверху штабель покрывают торфом слоем 15—20 см.

Недопустима укладка навоза в поле мелкими кучами, так как при этом навоз сильно выветривается и пересыхает, питательные вещества из него выщелачиваются дождевыми и талыми водами, потери азота достигают 35—40%, причем аммиачный азот, который доступен растениям в первый год, теряется нацело. Удобрительное действие навоза при этом резко снижается.

Качество навоза в большой степени зависит от продолжительности его хранения. С увеличением срока хранения потери азота и органического вещества из навоза возрастают. В зависимости от способа и продолжительности хранения навоз получается различной степени разложения.

По степени разложения различают следующие виды навоза: свежий, слаборазложившийся (солома почти полностью сохраняет свой цвет и прочность), полуперепревший (солома темно-коричневого цвета, легко разрывается), перепревший (солома полностью разложилась, навоз представляет черную мажущуюся массу) и перегной (рыхлая землистая масса).

С увеличением степени разложения навоза происходит значительное уменьшение его массы по сравнению с массой исходного свежего навоза, но процентное содержание азота, фосфора и калия повышается (табл. 38).

В перегное содержание азота, фосфора и калия наиболее высокое, однако для получения 20 т перегноя требуется 60—80 т свежего навоза, в то время как для получения 20 т полуперепревшего навоза только 25 т. При доведении навоза до стадии перегноя, а также перепревшего навоза теряется громадное количество азота.

Таблица 38 Состав навоза (%) в зависимости от степени его разложения (данные ВИУА и НИУИФ)

	Навоз					
Пока затели	евежий	полунере- превший	перспревший	перегной		
Содержание азота Содержание фосфора (P ₂ O ₅) Содержание калия (K ₂ O) Потери веса навоза от веса исходного свежего навоза	0,52 0,31 0,60	0,60 0,38 0,64 15—30	0,66 0,43 0,72 Около 50	0,73 0,48 0,84 65—75		

Не рекомендуется вносить в почву и соломистый свежий навоз, так как разложение соломы в почве сопровождается развитием большого количества микроорганизмов и потреблением ими растворимых соединений азота и фосфора из почвы. Внесение соломистого навоза незадолго перед посевом может привести к снижению урожая первой культуры. Кроме того, свежий навоз содержит большое количество семян сорных растений и вызывает излишнюю аэрацию почвы, вредную в засушливых районах.

Наиболее рационально применение полуперепревшего навоза, в котором лучше сохраняется азот, особенно аммиачный, и содержится больше органического вещества, чем в хорошо перепревшем навозе.

Фактическое количество навоза на скотных дворах, в навозохранилищах и штабелях определяется по занятому им объему и массе 1 м³ навоза. Примерная масса 1 м³ свежего рыхло сложенного и уплотненного навоза соответственно составляет около 300 и 400 кг, полуперепревшего — 700—800, а сильно разложившегося — 800—900 кг. Объемная масса жидкого навоза близка к 1, т. е. 1 м³ около 1 т.

Хранение жидкого навоза

Для хранения жидкого навоза рекомендуется устройство прифермских и полевых хранилищ. Емкость прифермских хранилищ закрытого или открытого типа должна быть равна 25—40% объема навоза, накапливаемого в течение 2-3 месяцев. Остальные 60-75% жидкого навоза хранятся в полевых навозохранилищах, представляющих собой открытые котлованы с пленочным покрытием дна и откосов, размещаемых в центре удобряемых массивов. При хранении жидкий навоз расслаивается, поэтому необходимо его систематическое перемешивание. При наличии трубопроводов весь жидкий навоз может храниться в прифермских хранилищах и перекачиваться в полевые емкости или непосредственно в цистерны-разбрасыватели и дождевальные установки. Прифермские хранилища проектируют объемом каждое не более $3-\hat{5}$ тыс. м³. Дно и стены этих емкостей должны быть хорошо гидроизолированы и устойчивы к агрессивному воздействию навоза, дно должно иметь уклон к заборному устройству. Глубина и форма хранилища должны позволять забор жидкого навоза насосами и проведение его переменивания. Закрытые емкости должны иметь вентиляцию, так как при хранении в них накапливаются газы и образующиеся смеси могут быть взрывоопасны. Жидкий навоз, получаемый на крупных животноводческих комплексах промышленного типа, перед использованием на удобрение должен подвергаться обеззараживанию.

Жидкий навоз с мелких товарных ферм при отсутствии острозаразных заболеваний может использоваться на удобрение без специального обеззараживания, за исключением проведения подкормок или дождевания таким навозом овощных и плодовых культур. Обеззараживание больших количеств жидкого навоза па крупных животноводческих комплексах может осуществляться на очистных сооружениях термической обработкой, специальными химическими препаратами. Наиболее доступен пока способ метанового брожения. При таком способе обеззараживания навоза не происходит потерь органического вещества и азота и одновременно получается горючий газ, который может использоваться как топливо.

Действие навоза на почву и растения

Полуперепревший навоз содержит большое количество органического вещества и поэтому оказывает положительное влияние на физические, физико-химические и биологические свойства почвы. При систематическом внесении навоза увеличивается содержание органического вещества в почве, снижается кислотность и повышается степень насыщенности основаниями. Песчаные и супесчаные почвы становятся более связными, повышается их поглотительная способность и буферность, что имеет большое значение для сохранения в них влаги и питательных веществ. Глинистые почвы под действием навоза становятся более рыхлыми, легче поддаются обработке, делаются более проницаемыми для воды и воздуха.

С навозом в почву вносится громадное количество микроорганизмов. Органическое вещество навоза — хорошо доступный источник пищи и энергетический материал для жизнедеятельности микроорганизмов. Поэтому при внесении навоза усиливается микробиологическая деятельность почвы и мобилизация содержащихся в ней запасов питательных веществ.

В навозе содержатся все элементы питания, необходимые растениям. Доступность отдельных питательных веществ навоза различна и зависит от его качества, а также от почвенных и климатических условий. В 1 т полуперепревшего навоза содержится азота 4,5—5 кг, фосфора 2—2,5, калия — 6—8 кг.

Коэффициент использования азота из полуперепревшего навоза первой культурой зависит от содержания в нем аммиачного азота и составляет в среднем 20—30% от общего количества азота. В первый год растения усваивают главным образом аммиачный азот. В твердых выделениях животных и в подстилке азот находится в форме органических соединений, которые медленно минерализуются в почве и в первый год слабо используются растениями. В жидких выделениях азот содержится преимущественно в форме растворимых соединений, легко превращающихся в аммиак. Поэтому чем больше жидких выделений поглощается подстилкой, тем богаче навоз аммиачным азотом и тем выше действие такого навоза в год внесения. Навоз на торфяной подстилке обычно содержит больше аммиачного азота, поэтому и эффективность его в первый год значительно выше, чем навоза на соломенной подстилке.

В навозе разных животных содержится различное количество аммиачного азота, поэтому использование азота из разных видов

навоза неодинаково. Из овечьего навоза использование азота первой культурой достигает 34%, из конского — 20, из коровьего — 18, из свиного при обильном кормлении — 30, при слабом кормлении — только 10%.

Коэффициент использования первой культурой фосфорной кислоты и особенно калия из навоза выше, чем азота. Усвоение растениями P_2O_5 в первый год составляет $30-40\,\%$, а $K_2O-60-70\,\%$ от общего содержания их в навозе. Из навоза в первый год лучше всего используется калий. Общее содержание калия в навозе также выше, чем азота и особенно фосфора.

Навоз обладает значительным последействием. Использование азота, фосфора и калия из навоза второй культурой составляет обычно соответственно 20-25, 10-15 и 15-20%, а третьей 5-10, 0-5 и 5-10%.

При внесении навоза прежде всего обеспечивается калийное питание растений. Положительное же действие навоза главным образом определяется содержанием в нем общего и аммиачного азота, так как в большинстве почв, особенно Нечерноземной зоны, для нормального питания растений в первую очередь не хватает азота. Систематическое внесение навоза снижает кислотность почвы (при дозе навоза 20-40 т на 1 га вносится 0.2-0.5 т кальция и магния в пересчете на карбонаты), улучшается питание растений кальцием, магнием, серой и микроэлементами. Большую роль в питании растений играет также выделяющаяся при разложении навоза углекислота. При разложении 30-40 т навоза ежедневно выделяется от 35 до 65 кг СО2, которым обогащается надпочвенный слой атмосферы, что улучшает углеродное питание растений. Кроме того, углекислота, растворяясь частично в почвенной влаге, оказывает положительное действие на мобилизацию труднорастворимых соединений фосфора, калия и других элементов питания.

Эффективностъ навоза и особенности его применения в различных почвенно-климатических условиях

Прямое действие (в первый год после внесения) и последействие навоза зависит от качества и дозы навоза и почвенно-климатических условий. Слаборазложившийся соломистый навоз в первый год может действовать хуже, чем на второй и третий год. Чем больше доза навоза, тем выше его прямое действие, а также выше и продолжительнее последействие.

На глинистых почвах навоз разлагается медлепиес, последействие его сказывается даже на шестой-седьмой год после внесения; на супесчаных почвах разложение навоза происходит быстрее и последействие его не столь длительно — три-четыре года. В более увлажненной Нечерноземной зоне навоз разлагается быстрее, чем в засушливых южных и юго-восточных районах, где процесс разложения протекает медленнее из-за недостатка влаги в почве. Поэтому в

Нечерноземной зоне прямое действие на первой культуре выше, а последействие на второй и третий год может быть ниже. В засушливых юго-восточных районах последействие навоза часто превышает прямое действие на первую культуру.

Навоз может применяться на самых различных почвах во всех районах Советского Союза. Однако эффективность его может быть различной в зависимости от почвенных и климатических условий, биологических особенностей культуры, а также качества навоза, времени и техники внесения.

Наиболее высокий эффект дает внесение навоза в северных, западных и центральных районах Нечерноземной зоны и на севере черноземной зоны, т. е. в районах, более обеспеченных влагой. Средняя доза навоза в этих районах 20—40 т на 1 га.

Высокие прибавки урожая зерновых, сахарной свеклы и других культур дает навоз на черноземных почвах. Средняя доза навоза здесь 15—20 т на 1 га.

В засушливых районах эффективность навоза ниже, чем в более влажных районах. Вносят его в дозе 15—20 т на 1 га. При надлежащей обработке почвы и других мероприятиях, обеспечивающих накопление и сохранение влаги, особенно при орошении, эффективность навоза в засушливых районах резко возрастает и дозу его можно увеличить.

Дозы внесения навоза зависят от качества и количества навоза и удобряемой культуры. Под пропашные культуры (кукурузу, картофель, сахарную свеклу и др.) необходимы более высокие дозы, чем под зерновые.

Наиболее рационально внесение навоза вместе с минеральными удобрениями. При этом действие навоза и минеральных удобрений заметно возрастает. Многочисленные опытные данные показывают, что при совместном внесении наполовину уменьшенных доз павоза и минеральных удобрений получаются более высокие урожаи, чем при раздельном внесении полной дозы этих удобрений.

Время внесения и глубина заделки навоза в почву. Навоз из навозохранилища или штабелей, сложенных в поле, следует равномерно разбросать, что лучше всего осуществляется навозоразбрасывателями (рис. 8), и немедленно запахать. Оставление навоза незапаханным только на один день приводит к большим потерям аммиачного азота и снижает эффективность удобрения.

Лучше всего вносить павоз с осени под зяблевую вспашку. Это особенно важно для засушливых районов. В Нечерноземной зоне полуперепревший навоз можно вносить также весной под перепашку зяби.

В зависимости от почвенных и климатических условий глубина запашки навоза может колебаться от 12—14 см до 20—22 см. В засушливых районах необходима более глубокая заделка навоза, чем во влажных. На тяжелых почвах, где разложение навоза затруднено, лучше запахивать его на меньшую глубину — 12—14 см, а на легких можно заделывать глубже — на 20—22 см.

Рис. 8. Разбрасыватель органических удобрений.

В севообороте навоз прежде всего необходимо вносить под пропашные культуры (картофель, кукурузу, сахарную свеклу), а также под овощные. Они наиболее требовательны к условиям питания и дают большую прибавку урожая по сравнению с другими культурами.

Для увеличения накопления органических удобрений важное значение имеет компостирование навоза с торфом.

Применение жидкого навоза

Действие и последействие неразбавленного водой жидкого навоза на урожай сельскохозяйственных культур не уступает эффективности подстилочного навоза в равных дозах.

Для транспортировки и внесения жидкого навоза на поверхность почвы применяются специальные цистерны-разбрасыватели. Транспортировка и внесение жидкого навоза может осуществляться по следующим схемам.

- 1. Прифермское навозохранилище цистерна полевое навозохранилище цистерна разбрасыватель.
- 2. Навозохранилище трубопроводная сеть дождевальная установка поле. Перед дождеванием жидкий навоз во вневегетационный период разбавляется водой в соотношении 1:1 3, а в период вегетации растений в соотношении 1:8—10.
- 3. Прифермское навозохранилище трубопровод полевое навозохранилище цистерна разбрасыватель поле.

Для снижения затрат на хранение, транспортировку и внесение жидкого навоза в условиях крупных животноводческих комплексов

промышленного типа планируется круглогодовое внесение жидкого навоза на близлежащие поля (радиус вывозки до 4 км), прежде всего в кормовых севооборотах и для удобрения культурных сенокосов и пастбиш.

АЖИЖ ВАНЕОВАН

Навозная жижа — цепное быстродействующее азотно-калийное удобрение, содержит в среднем 0.2-0.25% N и 0.4-0.5% К $_2$ О, фосфора в пей очень мало — 0.01%.

 \hat{B} зависимости от условий хранения содержание N и K_2O в навозной жиже может значительно колебаться: N от 0.02 до 0.8%, а K_2O от 0.1 до 1.2%.

Азот и калий в навозной жиже находятся в хорошо растворимой и легкодоступной для растений форме. Азот содержится главпым образом в форме мочевины $CO(NH_2)_2$, которая под влиянием уробактерий, выделяющих фермент уреазу, быстро превращается в углекислый аммоний $(NH_4)_2CO_3$, а последний легко разлагается с образованием CO_2 , H_2O и NH_3 . При неправильном хранении жижи аммиак быстро улетучивается и удобрительная ценность ее резко снижается.

Навозную жижу необходимо хранить в плотно закрытом жижесборнике. Потери азота при этом уменьшаются, так как воздух в жижесборнике быстро насыщается CO_2 , образующимся при разложении мочи, и диссоциация $(\mathrm{NH}_4)_2\mathrm{CO}_3$ с образованием аммиака будет задерживаться. Еще больше сокращаются потери азота, если поверхность жижи в жижесборнике покрыть тонким слоем нефти или отработавшего масла.

В опыте ВИУА потери азота из навозной жижи за 2 месяца хранения в открытом жижесборнике составили 53%, в закрытом жижесборнике — 39% и при хранении под слоем (толщиной 5 мм) отработавшего тракторного масла — только 28%, т. е. почти в 2 раза меньше.

Для уменьшения потерь азота из навозной жижи можно также прибавлять к ней 3-5% суперфосфата, который связывает аммиак с образованием $NH_4H_2PO_4$.

Общее количество навозной жижи, получаемой за год от разных видов животных, зависит от продолжительности стойлового периода, количества и качества подстилки и кормов, устройства скотного двора и навозохранилища. От одной головы крупного рогатого скота за стойловый период (220-240 дней) накапливается в среднем 2-2.5 м³ жижи, такое же количество получается от трех голов молодняка крупного рогатого скота до двух лет и от 10-12 телят.

Для вывозки и внесения навозной жижи применяют жижеразбрасыватели. Навозную жижу можно вносить до посева и в подкормку, а также использовать для приготовления компостов. В основное удобрение ее можно вносить с осени под зяблевую вспашку, а на легких почвах — лучше весной под перепашку зяби или предпосевную культивацию.

Под зерновые культуры, картофель и корнеплоды на 1 га вносят 15—20 т навозной жижи, а под овощи — 20—30 т. Жижа почти не содержит фосфора, поэтому целесообразно вносить одновременно фосфорные удобрения.

Применение навозной жижи высокоэффективно для подкормки озимых и пропашных культур, а также на лугах. Ранневесеннюю подкормку озимых и подкормку лугов проводят перед их боронованием из расчета 4—5 т на 1 га навозной жижи, разбавленной в 2—3 раза водой. В подкормку под пропашные и овощные культуры навозную жижу вносят в дозе 6—8 т на 1 га с помощью растениепитателей на глубину 10—15 см в середину междурядий.

При поверхностном внесении навозной жижи до посева или в подкормку ее необходимо заделать в почву немедленно, чтобы сократить потери азота. Задержка с заделкой жижи на 2-4 дня снижает ее эффективность на $30-50\,\%$.

В зимний период собранную навозную жижу лучше всего использовать для компостирования с торфом или с непригодной в корм соломой и другими материалами. При этом отпадает необходимость устройства больших жижесборников для хранения жижи, резко сокращаются потери азота и хозяйство получает дополнительное количество ценных органических удобрений.

ПТИЧИЙ ПОМЕТ

Птичий помет — полное быстродействующее удобрение, содержащее азот, фосфор и калий в легкодоступной для растений форме (табл. 39).

Таблица 39 Состав птичьего помета и годовой выход на голову

	Coc				
Вид птиц	вода	N	P ₂ O ₅	K20	Годовой вы- ход (кг на 1 голову)
Куры Утки Гуси	56 57 82	0,7—1,9 0,8 0,6	1,5—2 1,5 0,5	0,8—1 0,4 1,1	5—6 7—8 10—11

Содержание азота, фосфора и калия в птичьем помете резко меняется в зависимости от количества и качества корма: чем более концентрированный корм дается птице, тем больше питательных веществ содержится в помете

Азот в помете содержится главным образом в форме мочевой кислоты, которая быстро разлагается с образованием аммиака. При неправильном хранении помета в результате улетучивания аммиака происходят большие потери азота, достигающие 50% и более за несколько недель. Для сохранения азота в помете лучше

всего применять в птичниках сухую торфяную подстилку, которая поглощает выделяющийся из помета аммиак. или хранить его в смеси с торфом. Сырой помет смешивают с торфяной крошкой (на 4-5 частей помета 1 часть торфа), смесь подсушивают на воздухе и хранят в сарае или под навесом.

При отсутствии торфа можно пересыпать помет сухой перегной землей или перепревшим навозом, а также добавить к нему 7-10% суперфосфата, который почти полностью связывает образующийся аммиак.

Хорошо сохраненный птичий помет — ценное удобрение; может применяться под все культуры в качестве основного удобрения в дозе 1—4 т на 1 га с заделкой под плуг, а также в подкормку под озимые и пропашные культуры с заделкой бороной или культиватором при междурядных обработках.

Сухой помет перед внесением необходимо измельчить, дозы его можно уменьшить вдвое. При использовании в подкормку помет можно разбавить перед внесением водой в 6—7 раз и вносить в виде болтушки, но не следует оставлять его с водой на длительное время, так как при этом происходят большие потери азота.

ТОРФ

Торф — важный источник увеличения ресурсов органических удобрений в колхозах и совхозах. Общая площадь торфяников в нашей стране более 70 млн. га с запасом воздушно-сухого торфа около 160 млрд. т. Наличие больших запасов торфа позволяет многим колхозам и совхозам широко использовать его на удобрение, для приготовления различных компостов или в подстилку.

Виды торфа и их агрохимическая характеристика

Торф образуется в результате неполного разложения болотных растений в условиях повышенной влажности и недостаточного доступа воздуха. Торфяные болота в зависимости от условий образования и характера преобладающей растительности делят на три типа: верховые, низинные и переходные. Торф различных видов болот отличается по агрохимическим свойствам и качеству.

Качество торфа характеризуется ботаническим составом болотной растительности, степенью разложения, кислотностью, зольностью и содержанием азота и зольных элементов.

По наличию преобладающих растительных остатков торфа делятся на моховые, травянистые и древесные. Растения-торфообразователи обусловливают качество торфа как удобрения. Если растительные остатки в торфе представлены в основном сфагновым мхом, то качество торфа как удобрения низкое, если осоками, остатками древесины растений, то такой торф более ценен как удобрение.

Степень разложения торфа указывает на содержание в нем гумифицированных органических веществ, образовавшихся в резуль-

тате разложения растений-торфообразователей. Чем выше степень разложения торфа, тем лучше его качество как удобрения.

По степени разложения различают слаборазложившийся торф, содержащий до 20% гумифицированных органических веществ, среднеразложившийся, содержащий 20—40% этих веществ, и сильно разложившийся— более 40%.

Слаборазложившийся торф лучше всего использовать в подстилку, а хорошо- и среднеразложившийся можно использовать в качестве удобрения для приготовления различных компостов.

Для оценки качества торфа как удобрения важно знать его кислотность (pH), зольность и содержание питательных веществ (табл. 40).

Таблица 40 Агрохимическая характеристика различных видов торфа

		Содержание (% на абсолютно сухое вещество)						
Тии торфа	Нq йовэкоэ ихжктыв	органи- ческого вещества	волы	N	P ₂ O ₈	K ₂ O	CaO	
Ве рхо вой	2,8-3,6	98—95	2—5	0,8—1,5	0,030,15	Не более	0,2-0,5	
Переходный	3,6-4,8	95—92	5—8	1,2-2,5	0,1-0,3	Около	0,5—2	
Низинный	4,8-5,8	92—85	8—15	2,5-3,5	0,2-0,5	До 0,15	2—5	
	ì		l .		Ι, ί			

Все виды торфа бедны калием, но содержат большое количество азота, а высокозольный низинный торф богат также кальцием и фосфором.

Верховой торфимеет низкую зольность, высокую кислотность, беден питательными веществами, содержит больше органического вещества, чем низинный, и имеет большую поглотитель ную способность — 1 кг сухого торфа может поглотить 8—15 л влаги; характеризуется слабой степенью разложения. Верховой торф наиболее целесообразно использовать на подстилку (особенно слаборазложившийся) и для приготовления компостов.

Низинный торф — более разложившийся, содержит больше золы, богаче питательными веществами, имеет слабокислую или нейтральную реакцию. Органического вещества в нем меньше, чем в верховом торфе, и его поглотительная способность ниже.

Низинный торф используется главным образом для приготовления компостов, а некоторые низинные, богатые фосфором или известью торфа можно применять непосредственно как удобрения.

Особую ценность представляют вивианитовые торфа, содержащие от 2 до 15% P_2O_5 в виде фосфорнокислой закиси железа (вивианита $Fe_3(PO_4)_2 \cdot 8H_2O$). Включения вивианита в низинном торфе содержатся в виде прослоек голубого цвета. Вивианитовый торф может применяться как фосфорное удобрение. Известковые низинные тор-

 ϕ а, содержащие большое количество извести (до $15-40\,\%$), могут использоваться как известковые удобрения.

Переходный торф по содержанию питательных веществ, кислотности и зольности запимает промежуточное положение между низинным и верховым торфами. Пижние слои торфа переходных болот ближе к низинному, а верхние — к верховому торфу. Может применяться для приготовления компостов, а также в подстилку животным.

Использование торфа в сельском хозяйстве

Верховой торф, как уже указывалось, лучше всего использовать на подстилку для получения торфяного навоза, а низинные и переходные торфа — для приготовления различных компостов, торфоперегнойных горшочков и для мульчирования.

Непосредственно на удобрение в чистом виде можно использовать лишь сильнораэложившийся, высокозольный низинный торф, особенно торф, богатый известью (торфотуфы) и фосфором (вивианитовый торф).

Применение торфа в подстилку значительно увеличивает накопление навоза и повышает его качество, а сам торф приобретает при этом лучшие удобрительные свойства. Каждая тонна сухой торфяной подстилки обеспечивает дополнительное накопление 4—5 т навоза.

Для подстилки более пригодны моховые, сфагновые, а также осоковые и тростниковые слаборазложившиеся торфа, которые обладают способностью поглощать большое количество влаги и газов. При использовании торфяной подстилки улучпаются условия содержания животных: уменьпается относительная влажность в животноводческих помещениях и содержание NH₂ и CO₂.

Торфяные компосты. Для приготовления компостов могут быть использованы низинные, переходные, а также более разложившиеся верховые торфа. Большая часть содержащегося в торфе азота находится в малодоступной органической форме и только незначительная часть его (2—3% от общего количества) в форме минеральных соединений — аммиака и нитратов.

Органическое вещество торфа очепь устойчиво к микробиологическому разложению, минерализация органических соединений азота происходит очень медленно. Многие виды торфа имеют кислую реакцию, что также затрудняет разложение их в почве. Микрооргацизмов в торфе очень мало вследствие кислой реакции, недостатка растворимых форм азота и легкодоступных органических веществ. Поэтому использование чистого торфа на удобрение малоэффективно и часто не оправдывает в первый год затрат, связанных с его применением. Эффективность торфа повышается при компостировании с биологически активными органическими удобрениями — навозом, навозной жижей, фекалием — или с минеральными удобрениями — фосфоритной мукой, известью, золой и др.

Торфо-навози торфобогащается микроорганизмами, устраняется его кислотность, в компосте усиливается микробиологическая деятельность, интенсивнее происходит разложение органического вещества. Торф благодаря высокой поглотительной способности полностью связывает аммиак, образующийся при разложении органического вещества, потери азота пз навоза резко уменьшаются. Хорошо приготовленный торфо-навозный компост не уступает по эффективности навозу.

Действие компоста еще более повышается при добавлении к нему 2-3% фосфоритной муки, а при использовании кислого торфа — также 1-2% извести. Для компостирования с навозом необходимо использовать проветренный торф с влажностью 60-65%.

Торфо-навозные компосты готовят в поле на месте их применения. Торф с навозом укладывают в штабеля шириной не менее 3 м и высотой 1,5—2 м. При закладке компоста на 1 часть навоза берут 2—3 части торфа и больше. Чем выше степень разложения торфа, тем больше берут торфа. Торф и навоз поочередно укладывают слоями толщиной 15—20 см, каждый слой рекомендуется посыпать фосфоритной мукой из расчета 20—30 кг на 1 т компоста.

При послойной закладке компоста зимой не обеспечивается достаточное его разогревание, штабель промерзает, разложения органического вещества торфа не происходит и цель компостирования не достигается. При зимней закладке лучше применять очаговый способ укладки павоза.

Торфо-жижевые компосты. Накапливающуюся в хозяйстве навозную жижу целесообразно использовать для компостирования с торфом; при этом резко сокращаются потери азота из навозной жижи и повышается удобрительное качество торфа. Для компостирования с навозной жижей можно использовать все виды торфа, кроме известковых. На 1 т проветренного торфа в зависимости от его влажности берется от 0,2 до 1 т навозной жижи.

Торфо-жижевые компосты готовят зимой и летом обычно в поле, ближе к месту внесения. В штабеле торфа прорывают канаву глубиной 50-60 см и шириной около 1 м, в которую заливают навозную жижу. После впитывания жижи канаву засыпают торфом. Можно укладывать торф слоями 40-50 см и каждый слой заливать навозной жижей.

Для обогащения компоста фосфором рекомендуется при компостировании добавлять фосфоритную муку 20—30 кг на 1 т компоста.

Торфо-жижевые компосты можно вносить через 1—1,5 месяца после закладки. По эффективности они не уступают навозу, а часто даже превосходят его. Хорошо разложившийся торф, увлажненный навозной жижей, можно сразу вносить в почву без компостирования.

Тор фо-фекальные компосты. Фекалий содержит азота больше, чем навоз. В тонне фекалия содержится до 10—11 кг N, 2—3 кг P_2O_5 и 2—2,5 кг K_2O . Азот в нем находится в форме мочевины, которая разлагается с образованием аммиака, а последний

легко улетучивается. При внесении фекалия в чистом виде происходят большие потери азота, а неравномерное распределение фекалия по полю создает большую пестроту урожая.

При компостировании торфа с фекалием обеспечивается наиболее рациональное использование на удобрение как торфа, так и фекалия. При этом фекалий обеззараживается, потери азота резко уменьшаются, а азот и другие питательные вещества, содержащиеся в торфе, превращаются в усвояемую форму. Смешивать с фекалием можно все виды торфа. Чем влажнее торф, тем меньше нужно брать фекалия. Лучше всего использовать торф влажностью 40-50%. На 1 т верхового и переходного торфа следует брать 2 т фекалия, а на 1 т низинного торфа — 1 т фекалия.

Закладывают торфо-фекальные компосты на удобряемом поле: укладывают слой торфа толщиной 20-25 см, заливают его фекалием и прикрывают следующим слоем торфа, и так до высоты 2 м. Компосты выдерживают не менее 1,5-2 месяцев и вносят как основное удобрение.

Компостирование с фосфоритной мукой, известью изолой проводят при укладке торфа в штабеля путем равномерного добавления их к торфу в количестве от 2 до 4%. Для приготовления таких компостов можно использовать верховой, переходный и некарбонатный низинный торфа. При компостировании торфа с фосфоритной мукой фосфоритная кислота фосфоритной муки переходит в усвояемую форму. В то же время под влиянием фосфоритной муки, а также извести и золы нейтрализуется кислотность торфа, поэтому в нем интенсивнее протекают микробиологические процессы, усиливается разложение и накапливается больше минеральных соединений азота.

Для ускорения созревания компостов и повышения их эффективности рекомендуется добавлять при компостировании небольшое количество (около 5%) биологически активных органических удобрений — навоза, навозной жижи или фекалия.

Торфяные компосты можно готовить непосредственно на осущенном торфянике при летней послойно-поверхностной добыче торфа. Для этого необходимые удобрения вносят перед поверхностной обработкой торфяника и тщательно перемешивают при последующих обработках.

Применение удобрений на осушенных торфяниках

Торфяники непосредственно после осущения или после частичной выработки (заготовка торфа на подстилку, для приготовления компостов, изготовления торфо-перегнойных горшочков или мульчи, на удобрение) используются для выращивания зерновых, полевых кормовых и овощных культур, создания сеяных лугов и пастбищ.

Торфяные почвы содержат много органического вещества (85—95% твердой фазы) и богаты азотом. Они обладают большой емкостью поглощения и влагоемкостью, высокой скважностью и малой

объемной массой. Азот в торфяных почвах находится в форме устойчивых к микробиологическому разложению органических соединений. В первые годы освоения торфяников, особенно кислых верховых и переходных, скорость минерализации азота довольно ограниченная. Для усиления микробиологических процессов и ускорения мобилизации азота в этих почвах целесообразно применение небольших доз навоза, навозной жижи, фекалий. При освоении кислых верховых и низинных торфяников обязательно известкование, которое проводится в половинной дозе от полной нормы (определяемой по гидролитической кислотности) во избежание одностороннего накопления кальция в почве.

Торфяные почвы бедны калием (за исключением торфов с прослойками речного ила, богатого калием) и нередко фосфором. Поэтому
при использовании торфяников в качестве лугово-пастбищных или
полевых угодий первоочередное значение имеет применение калийных и фосфорно-калийных удобрений. Внесение азотных удобрений
необходимо в первые годы освоения торфяников, а в дальнейшем —
лишь при интенсивном их использовании для выращивания высоких
урожаев овощных и кормовых культур.

Для торфяников характерен недостаток доступной растениям меди, в связи с чем применение медных удобрений — необходимое условие получения хорошей урожайности сельскохозяйственных культур на этих почвах.

ЗЕЛЕНОЕ УДОБРЕНИЕ

Зеленым удобрением, или сидерацией, называется выращивание в поле некоторых бобовых растений (сидератов) и запахивание их зеленой массы в почву с целью обогащения ее азотом и органическим веществом. В качестве сидератов используются однолетние и многолетние люпины, сераделла, донник, озимая вика, озимый горох, пелюшка, чина и др.

Бобовые растения при помощи клубеньковых бактерий, развивающихся на их корнях, способны усванвать азот воздуха и обогащать почву связанными соединениями азота. При выращивании бобовых сидератов на 1 га образуется до 40—50 т зеленой массы, содержащей 150—200 кг азота. По содержанию азота 1 т зеленого удобрения равноцениа 1 т навоза (табл. 41).

Таблица 41 Состав навоза и зеленого удобрения

VecConne	Содержание питательных элементов (кг на 1 т)						
Удобрения	N	P2O4	K ₂ O	CaO			
Навоз смешанный Зеленая масса люцина Зеленая масса до нн ика	5,0 4,5 7,7	2,4 1,0 0,5	5,5 1,7 1,9	7,0 4,7 9,7			

После запашки и минерализации зеленой массы сидератов в почве азот, связанный в форме органических соединений, переходит в минеральную форму и используется последующими растениями. причем коэффициент использования азота зеленого удобрения почти вдвое выше, чем азота навоза. Кроме того, бобовые сидераты, облапая хорошо развитой и глубоко проникающей в почву корневой системой, извлекают питательные элементы из нижних горизонтов почвы, а также усваивают фосфор и другие питательные вещества из труднорастворимых соединений. Поэтому при разложении запаханной растительной массы пахотный слой почвы обогащается пе только перегноем и усвояемыми соединениями азота, но также фосфором, калием и кальцием. Под влиянием зеленого удобрения усиливается микробиологическая деятсльность почвы, повышается ее влагоемкость, поглотительная способность, насыщенность основаниями и буферность, улучшается структура. Применение зеленого удобрения значительно повышает плодородие почв и урожайность последующих культур (табл. 42).

Таблица 42
Влияние зеленого удобрения на урожайность сельскохозяйственных культур на бедной песчаной почве (данные многолетнего опыта Новозыбковской опытной станции)

	Урожайность (ц с 1 га)						
Удобрения	ржи	картофелл	овса				
Без удобрения Зеленое удобрение (люпин)	5,8 11,2	130 184	7,8 9,7				

Эффективность и продолжительность действия веленого удобрения тем выше, чем больше зеленой массы запахивается в почву.

Для получения хорошей урожайности зеленой массы бобовых сидератов необходимо внесение фосфорных и калийных удобрений (по 45—60 кг действующего вещества на 1 га) и обработка семян нитрагином для заражения клубеньковыми бактериями. (Нитрагин — препарат, содержащий клубеньковые бактерии, которые, развиваясь на корнях бобовых растений, усваивают азот из воздуха.)

Успешное использование сидератов возможно во многих районах страны, однако наибольшее значение зеленое удобрение имеет на дерново-подзолистых, серых лесных и особенно на легких песчаных почвах Нечерноземной зоны. Основные сидераты в этой зоне—однолетние люпины (как алкалоидные, так и безалкалоидные разновидности), сераделла, многолетний люпин (в северных районах), а также донник (на почвах с высоким содержанием кальция или сильно произвесткованных). Большое значение имеет применение зеленого удобрения в орошаемых районах влажных субтропиков, на Дальнем Востоке, в Сибири.

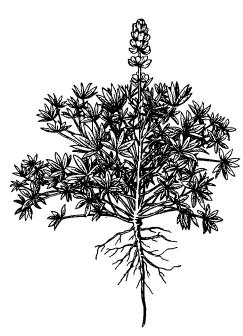


Рис. 9. Люпин желтый.

Рис. 10. Люпин многолетний.

Наиболее распространенные сидераты — люпины. Они хорошо произрастают и способны давать большую зеленую массу как на самых бедных песчаных, так и на более тяжелых суглинистых почвах (рис. 9, 10).

Однако люпины не переносят высокого содержания в почве кальция и поэтому непригодны для карбонатных черноземов и сероземов; на этих почвах используются другие сидераты: озимый горох, коровий горох, озимая вика, донник, чина и др.

Люпин и другие сидераты могут быть использованы на зеленое удобрение в виде самостоятельной культуры (выращиваются как парозанимающая культура, т. е. занимают поле с весны и запахиваются во второй половине лета), промежуточной подсевной или пожнивной культуры (выращиваются в промежутке между уборкой одной культуры и посевом другой), а также в виде укосной массы, выращенной на другом участке, в выводном поле (многолетний люпин).

Большое хозяйственное значение имеет посев кормовых (безалкалоидных) желтых люпинов в занятых нарах с последующим двухсторонним их использованием: зеленая масса скашивается на корм, а стерневые остатки (или отросшая отава) запахиваются на удобрение.

Зеленое удобрение, как весьма эффективное, дешевое и доступное местное удобрение, имеет особенно большое значение для повышения плодородия малоокультуренных почв.

СИСТЕМА УДОБРЕНИЯ

Наиболее эффективное использование удобрений обеспечивается в том случае, если они применяются в определенной системе с учетом конкретных почвенных и климатических условий, свойств удобрений, особенностей питания отдельных культур и чередования их в севообороте.

Под системой удобрения понимается комплекс агротехнических и организационно-хозяйственных мероприятий по наиболее рациональному, плановому применению удобрений в целях повышения урожайности сельскохозяйственных культур и плодородия почвы. При разработке систем удобрения необходимо:

предусмотреть мероприятия по максимальному накоплению навоза, заготовке торфа, различных компостов и других местных удобрений, правильному их хранению и использованию;

определить размеры приобретения минеральных удобрений (включая микроудобрения), исходя из планируемой их поставки для экономического района расположения хозяйства и потребности в удобрениях для получения планируемого уровня урожайности сельскохозяйственных культур с учетом экономических возможностей хозяйства;

разработать план проведения известкования (или гипсования), определить потребность хозяйства в извести (гипсе) по годам и мероприятия по их заготовке или завозу;

обеспечить полную и своевременную вывозку удобрений, правильное их хранение, механизацию работ по подготовке удобрений и внесению в почву.

Все эти мероприятия должны быть тесно увязаны с общим организационно-хозяйственным планом колхоза или совхоза. Далее необходимо разработать наиболее рациональную систему применения удобрений в севооборотах хозяйства.

Под системой удобрения в севообороте понимается план распределения органических и минеральных удобрений между отдельными культурами севооборота. При его составлении необходимо определить оптимальное соотношение между отдельными видами удобрений, выбрать наиболсе эффективные формы удобрений, предусмотреть дозы, время внесения и способы заделки в зависимости от биологических особенностей растений и их чередования в севообороте,

свойств удобрений, почвенно-климатических условий и других факторов.

Системой удобрения должна решаться задача максимально возможной продуктивности севооборота, получения высокой и устойчивой урожайности всех культур, рационального использования плодородия почвы и его повышения при наиболее агрономически и экономически выгодном применении удобрений.

ОСНОВНЫЕ ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМЫ УДОБРЕНИЯ

Для построения правильной системы применения удобрений в севообороте необходимо учесть все многообразие природных, агротехнических, организационно-экономических и других условий, от которых зависит эффективность удобрений.

КЛИМАТИЧЕСКИЕ И ПОЧВЕННЫЕ УСЛОВИЯ

На эффективность удобрений большое влияние оказывают дозы, сроки и способы их внесения. Важное значение имеют количество осадков и температурные условия в течение вегетационного периода. В районах, обеспеченных влагой, а также при орошении эффективность удобрений значительно выше и они применяются в больших дозах.

При недостатке влаги прибавки урожайности от удобрений снижаются. Вместе с тем при внесении удобрений растения более экономно и продуктивно используют влагу, поэтому и в районах недостаточного увлажнения урожайность при использовании удобрений значительно выше, чем без удобрений. Для повышения эффективности удобрений в южных и юго-восточных районах страны с недостаточным количеством осадков необходимо принимать все меры для максимального накопления и сохранения влаги в почве (снегозадержание, соответствующие приемы обработки почвы и ухода за растениями и т. д.). Здесь особенно важно вносить удобрения с осени под глубокую зяблевую вспашку, с тем чтобы они размещались в более влажном, менее пересыхающем слое почвы. Мелкая заделка удобрений в засушливых районах (или в засушливые годы в районах с достаточной влагообеспеченностью), как и внесение удобрений в подкормку, дает незначительный эффект. В районах с большим количеством осадков в осенне-зимний период легкорастворимые азотные, а на легких почвах и калийные удобрения во избежание вымывания питательных веществ лучше вносить перед посевом весной.

При выборе видов и форм удобрений и установлении доз и способов их внесения необходимо учитывать свойства почвы.

На бедных органическим веществом и элементами питания кислых дерново-подзолистых почвах необходимы известкование и высокие дозы органических и минеральных удобрений. В первом минимуме на этих почвах обычно находится азот, на втором месте по эффективности на суглинистых почвах стоит фосфор. На песчаных

и супесчаных почвах наряду с азотом большое значение имеет калий, а на торфянистых и болотных почвах калий находится в первом минимуме. На дерново-подзолистых почвах могут с успехом применяться труднорастворимые формы фосфорных удобрений.

Из калийных удобрений на песчаных и супесчаных подзолистых почвах особенно эффективны калийно-магнезиальные соли, из азотных целесообразнее применять аммиачные удобрения (в нейтрализованной форме), азот которых меньше подвергается вымыванию из почвы. При использовании содержащих нитратный азот удобрений их обязательно надо вносить весной.

На черноземах и темно-каштановых почвах нередко в первом минимуме находится фосфор, поэтому здесь сильное действие оказывают фосфорные удобрения, а на светло-каштановых почвах и сероземах очень большое значение имеют азотные и фосфорные удобрения и меньшее — калийные. Эти почвы имеют нейтральную или щелочную реакцию, поэтому применение труднорастворимых фосфорных удобрений нецелесообразно.

Механический состав почвы имеет существенное значение для передвижения питательных веществ удобрений, их поглощения и закрепления в почве. Почвы легкого механического состава отличаются не только меньшим потенциальным плодородием, но и меньшей поглотительной и буферной способностью. Это должно учитываться при определении дозы и формы удобрений, срока внесения и способа заделки.

Для правильного применения удобрений большое значение имеет почвенно-агрохимическое обследование и анализ почвы с целью определения ее кислотности и содержания подвижных соединений азота, фосфора и калия.

Знание агрохимических свойств почвы позволяет применять удобрения и проводить известкование дифференцированно и, таким образом, значительно повысить их экономическую эффективность. Очень важно учитывать степень окультуренности почвы и предшествующее внесение удобрений. На достаточно окультуренных и ранее хорошо удобренных почвах дозы органических и минеральных удобрений могут быть снижены. Однако эффективность удобрений на таких почвах не уменьшается, а, паоборот, повышается.

Действие удобрений в сильной степени зависит также от уровня агротехники. Система удобрения разрабатывается и осуществляется в тесной взаимосвязи со всем комплексом агротехнических приемов по возделыванию сельскохозяйственных культур, входящих в состав севооборота. Высокая агротехника, начиная с обработки почвы, подготовки кондиционного посевного материала, посева и ухода за культурой и т. д. является наобходимым условием паиболее эффективного использования растешиями элементов питания из почвы и применяемых удобрений. При нарушении установленных агротехнических требований (некачественная или несвоевременная обработка почвы, невысокое качество посевного материала, засоренность посевов и т. д.) удобрения не могут полностью проявить свое дейст-

вие на урожай и его качество. При высокой культуре земледелия эффективность удобрений возрастает.

Особенности агротехники и способ посева отдельных культур оказывают влияние на сроки и способы внесения удобрений. Так, под пропашные культуры, помимо внесения удобрений до посева и в рядки при посеве, некоторую часть их можно внести в подкормку с заделкой в почву при междурядной обработке. Под культуры сплошного сева удобрения должны вноситься преимущественно до посева и в рядки при посеве.

ОСОБЕННОСТИ ПИТАНИЯ ОТДЕЛЬНЫХ КУЛЬТУР И ХАРАКТЕР СЕВООБОРОТА

При построении правильной системы применения удобрений должны учитываться особенности питания отдельных культур. Сельскохозяйственные растения различаются общими размерами потребления элементов питания на формирование урожая, темпами поглощения на протяжении неодинакового по длительности периода вегетации, соотношением усвоения основных элементов — азота, фосфора и калия.

Для культур, более требовательных к элементам питания (сахарная свекла, кукуруза, картофель и др.), необходимы при прочих равных условиях более высокие дозы удобрений.

Разные сорта одной и той же культуры могут сильно различаться по требовательности к пищевому режиму. Скороспелые сорта имеют более короткий период поглощения питательных веществ и более требовательны к условиям питания, чем позднеспелые сорта. Но при близкой продолжительности вегетации различные сорта могут обладать неодинаковой отзывчивостью на удобрения.

Правильное применение удобрений должно обеспечивать наилучшие условия питания растений в течение всего периода вегетации в соответствии с потребностью их в питательных веществах в различные периоды роста и развития.

При разработке системы удобрения, выборе доз, сроков и способов применения удобрений должны быть учтены различия в чувствительности отдельных культур к концентрации питательных веществ в почвенном растворе, особенно в молодом возрасте, в усвояющей способности корневой системы и характере ее развития (мощность, глубина проникновения и т. д.), в отношении к реакции среды. Особое значение имеет правильное соотношение применяемых доз эзотных, фосфорных и калийных удобрений с учетом биологической потребности в различные периоды вегетации. Избыточное одностороннее питание азотом, например, может вызвать усиленный продолжительный рост ботвы у корне- и клубнеплодов, задержать формирование товарной части урожая и снизить его качество, а у зерновых культур — привести к полеганию. Для ускорения созревания культур важное значение имеет повышенный уровень фосфорного питания.

Необходимо предусматривать достижение не только высоких и устойчивых урожаев культур, но и сохранение, и повышение качества получаемой продукции.

При построении правильной системы удобрения в севообороте необходимо учитывать также агротехническое и народнохозяйственное значение различных культур. Нельзя имеющиеся в хозяйстве удобрения равномерно распределять по всем культурам севооборота, так как при этом не обеспечивается экономическая эффективность от их применения.

В каждом севообороте есть ведущая культура, имеющая наибольшее значение при выполнении плановых государственных заданий. В Нечерноземной зоне очень важная техническая культура лен, на Украине — сахарная свекла и озимые зерновые, в республиках Средней Азии — хлопчатник, на Северном Кавказе и в Поволжье — зерновые культуры, в хозяйствах животноводческого направления — кормовые культуры (кукуруза, корнеплоды и др.), в пригородных хозяйствах — картофедь, овощные и т. д. Ведущие культуры севооборота должны получать удобрения в первую очередь и в больших количествах. Кроме того, такие культуры, как кукуруза, сахарная свекла, картофель, не только потребляют значительно больше питательных веществ, но и лучше оплачивают удобрения дополнительной прибавкой урожая, поэтому их удобрению во всех севооборотах необходимо уделять большее внимание. Для севооборотов с большим удельным весом технических и других более требовательных к удобрению культур (овощные, картофель, кукуруза и др.) должна быть предусмотрена более высокая обеспеченность органическими и минеральными удобрениями.

Правильная система удобрения должна обеспечивать повышение урожайности не только ведущих, но и всех других культур севооборота путем непосредственного внесения под них удобрений или последействием удобрений, внесенных под ведущие культуры. Продолжительность последействия зависит от особенностей отдельных удобрений.

Навоз и фосфорные удобрения (особенно фосфоритная мука) оказывают положительное действие на урожайность сельскохозяйственных культур в течение ряда лет, последействие азотных и калийных удобрений незначительно.

При построении системы удобрения необходимо учитывать также порядок чередования культур, характер предшественника и его урожайность. Само по себе чередование культур обеспечивает получение более высокой урожайности по сравнению с монокультурой. Кроме того, в севообороте облегчается борьба с болезнями, вредителями и сорной растительностью. При правильном чередовании культур более продуктивно используются питательные вещества почвы и возрастает эффективность удобрений как минеральных, так и органических.

В длительном опыте Сумской опытной станции через 20 лет бессменного возделывания сахарной свеклы при внесении навоза 52 т на 1 га через год урожай-

ность была 145 ц с 1 га, а в севообороте (пар, озимые, свекла, яровые) при внесеили 40 т павоза на 1 га один раз в четыре года — 253 ц с 1 га.

Различия в удобрении отдельных культур севооборота зависят от предшественника и его урожая, а также количества корневых и пожнивных остатков и содержания в них элементов питания.

При высокой насыщенности севооборота картофелем, корнеплодами, силосными и другими калиелюбивыми культурами возрастает потребность в калийных удобрениях и повышается их эффективность. В зависимости от состава возделываемых культур и чередования их в севообороте неодинаково решаются и вопросы известкования. Эффективность фосфоритной муки значительно возрастает при выращивании в севооборотах на легких дерново-подзолистых почвах люпинов, обладающих лучшей способностью усваивать фосфор из труднорастворимых соединений.

После пропашных культур, которые при хорошем уходе оставляют поля чистыми от сорняков и в то же время потребляют очень большое количество питательных веществ из почвы и поздно убираются, эффективность удобрений и потребность в них последующих культур повышаются, особенно если урожайность этих предшественников была высокая, а удобрения под них вносились в умеренных количествах. Под культуры, идущие после хорошо удобренных предшественников, дозы удобрений могут быть уменьшены. После многолетних бобовых трав и зернобобовых, которые обогащают почву азотом, но обедняют фосфором и калием, потребность в азотных удобрениях уменьшается, а действие фосфорных и калийных удобрений усиливается.

Таким образом, распределение удобрений по полям севооборота зависит от агротехнического и народнохозяйственного значения культуры, места ее в севообороте, характера предшественников и степени удобренности отдельных полей.

СОЧЕТАНИЕ ПРИМЕНЕНИЯ НАВОЗА И МИНЕРАЛЬНЫХ УДОБРЕНИЙ

При размещении удобрений в полях севооборота важно правильно применение органических и минеральных удобрений. Академик Д. Н. Прянишников писал, что совместное внесение навоза и минеральных удобрений «позволяет обильно снабдить растения усвояемой пищей в первых стадиях развития и дать в то же время в виде навоза резерв постоянно приходящих в действие питательных веществ», т. е. обеспечивает наилучшие условия питания растений в течение всего вегетационного периода. Кроме того, при внесении органических удобрений вместе с минеральными ослабляется отрицательное влияние физиологической кислотности и повышенной концентрации питательных веществ, особенно заметное при внесении высоких доз минеральных удобрений. Опыты показывают, что при совместном внесении половинных доз навоза и минеральных удобрений, как правило, получаются более высокие прибавки урожая, чем при раздельном внесении полной дозы каждого из этих

удобрений. Особенно высокий эффект дает совместное внесение навоза и минеральных удобрений на посчаных и супесчаных почвах, слабоокультуренных суглинистых дерпово-подзолистых почвах и выщелоченных черноземах (табл. 43).

Таблица 43 Эффективность совместного внесения навоза и минеральных удобрений (данные различных опытных станций по П. Г. Найдину)

Культура Почвы		Урожайность (ц с 1 га)						
	Почвы	без удоб- рений	мине- ральные удобре- ния	папоз	навоз + NPK в половинных дозах			
Сахарная	Слабоподзолистая су- несчаная	194,9	242,2	283,4	320,8			
свокла	Серая лесная	228,9	272,4	259,0	281,9			
	Выщелоченцый черновем		211,0	197,0	218,5			
Картофель	Дерново-подзолистая супесчаная	72,0	149,0	218,0	249,0			
	Дерново-подзолистая суглинистая	214,0	208,0	281,0	294,0			

Органических удобрений в хозяйстве бывает обычно исдостаточно для всех полей севооборота. Поэтому их прежде всего необходимо вносить совместно с минеральными удобрениями под наиболее требовательные пропашные культуры — сахарную свеклу, картофель, кукурузу и др., а из зерновых в первую очередь под озимые. Пропашные культуры дают более высокие прибавки урожайности на каждую тонну внесенного навоза. Навоз, внесенный под пропашные и озимые культуры, будет оказывать последействие на все остальные культуры севооборота, под которые непосредственно вносят только минеральные удобрения. При наличии в хозяйстве специализированных прифермских и овощных севооборотов они обеспечиваются органическими удобрениями в первую очередь и в больших количествах.

Средиис дозы павоза в Нечерпоземной зоне обычно 20-40 т на 1 га (в кормовых и овощных севооборотах до 60-80 т на 1 га), а в южных районах — 10-20, реже 30 т на 1 га.

К навозу на черноземах в первую очередь необходимо добавлять азотные удобрения, на дерново-подзолистых суглинистых почвах — азотные и фосфорные, на супесчаных почвах значение фосфорных удобрений уменьшается, но увеличивается роль азотных и калийных удобрений.

УСТАНОВЛЕНИЕ ДОЗ МИНЕРАЛЬНЫХ УДОБРЕНИЙ

При построении системы удобрения в севообороте один из наиболее важных и сложных вопросов — установление дозы удобрений для получения планируемой урожайности различных культур.

Дозы удобрений зависят от особенностей питания отдельных растений (общей потребности в питательных веществах, интенсивности поглощения их в течение вегетационного периода, мощности развития корневой системы и ее усвояющей способности), а также от уровня плодородия почвы (содержания усвояемых форм питательных веществ, механического состава, поглотительной способности, реакции, и т. д.). Только при тщательном учете всех этих факторов можно правильно установить дозу удобрений и соотношение между отдельными их видами.

При определении доз удобрений особое значение имеет уровень планируемой урожайности. Чем выше планируемая урожайность, тем больше требуется вносить и удобрений. Однако при этом необходимо учитывать, что урожайность возрастает в прямой зависимости от увеличения доз туков лишь до определенного уровня, при котором достигается наибольшая оплата единицы удобрения получаемой сельскохозяйственной продукцией. В этом довольно ограниченном интервале доз урожайность от дополнительного внесения удобрений растет как с единицы площади, так и в расчете на единицу удобрения.

Последующее повышение доз удобрений сопровождается увеличением урожайности с единицы площади, но величина абсолютных прибавок урожайности от возрастающих доз и окупаемость единицы удобрения продукцией постепенно снижается. После достижения наивысшей стабильной урожайности с единицы площади дальнейшее увеличение норм удобрений нецелесообразно. Повышение доз удобрений экономически оправдано до того момента, пока стоимость прибавки урожайности окупает издержки, связанные с применением дополнительного количества удобрений.

Поэтому при ограниченной обеспеченности удобрениями предпочтительнее норма, которая позволяет получить наивысшую оплату единицы удобрения. При полном удовлетворении потребности в удобрениях основной целью должно являться получение максимально возможного выхода продукции с единицы площади и решаться задача сохранения и повышения плодородия почвы.

Основой для установления оптимальных доз и соотношения питательных веществ под сельскохозяйственные культуры являются результаты полевых опытов с удобрениями.

Проведение полевых опытов с удобрениями в различных почвенно-климатических зонах страны осуществляются по единым схемам опытными станциями и научно-исследовательскими сельскохозяйственными институтами, зональными агрохимическими лабораториями под научно-методическим руководством головных учреждений ВАСХНИЛ и Главного управления химизации СССР — Всесоюзного института удобрений и агропочвоведения им. Д. Н. Прянишникова (ВИУА) и Центрального института агрохимического обслуживания (ЦИНАО).

На основании обобщения результатов многочисленных географических полевых опытов выявляются существующие закономер-

ности эффективности удобрений от почвенно-климатических условий, агротехники и других факторов, разрабатываются рекомендации по применению туков.

Итоги работы Географической сети полевых опытов позволяют: установить размеры средних устойчивых прибавок урожайности сельскохозяйственных культур от внесения различных доз отдельных видов удобрений и их сочетаний;

определить оптимальные дозы и соотношения основных элементов питания для получения максимальной агрономической и экономической народно- и внутрихозяйственной эффективности удобрений:

устанавливать потребность в удобрениях по природно-экономическим районам и областям страны, планировать их производство и распределение в государственном масштабе.

Распределение минеральных удобрений по природно-экономическим районам и по сельскохозяйственным культурам производится в плановом порядке на основе агроэкономической оценки данных Географической сети полевых опытов ВИУА и системы агрохимслужбы СССР. Оно осуществляется с учетом почвенно-климатических условий, народнохозяйственной зпачимости выращиваемых культур и экономической эффективности удобрений исходя из потребности страны в различных видах сельскохозяйственной продукции и достигнутого уровня развития туковой промышленности.

Наибольшие нормы удобрений применяются под важнейшие технические культуры — хлопчатник, сахарную свеклу, картофель, лен-долгунец, табак, а также овощные и бахчевые культуры в основных районах их возделывания. Они обеспечиваются в настоящее время удобрениями по потребности. За последние годы значительно возросло применение минеральных удобрений под зерновые культуры. Если в 1961—1965 гг. в среднем за год под зерновые вносилось 5 млн. т туков, то в 9-й пятилетке — более 21 млн. т. Увеличение производства зерна в годы десятой пятилетки будет решаться в значительной степени за счет применения большого количества минеральных удобрений под зерновые культуры, особенно в районах достаточного увлажнения и при орошении.

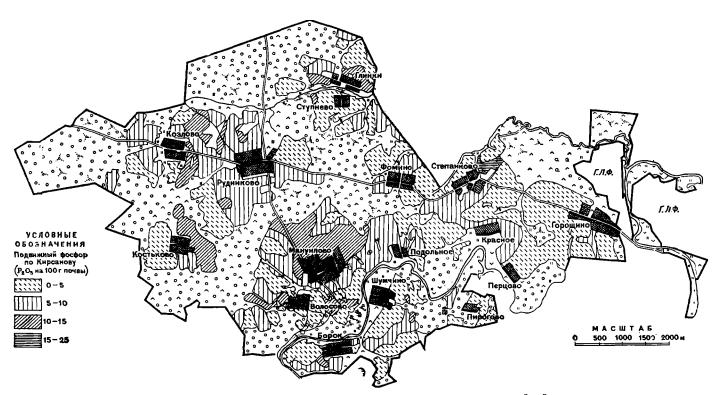
Оплата центнера минеральных удобрений прибавкой зерна составляет: в увлажненной части Северного Кавказа — 2,5 ц, в западных областях УССР и Молдавии — 1,7, в Нечерноземной зоне РСФСР — 1,6, в Центрально-Черноземном райопе — 1,5, в Лесостепи — Украины — 1,3 при средней по стране оплате 1,1—1,3 ц.

С увеличением производства удобрений и поставки их сельскому хозяйству более полно будет обеспечиваться потребность в элементах питания не только зерновых, но и кормовых культур.

В районах выращивания важнейших сельскохозяйственных культур при достаточной обеспеченности влагой и в условиях орошения применяются высокие дозы минеральных удобрений.

Средние рекомендуемые для отдельных зон дозы удобрений устанавливают для планируемого уровня производства сельскохозяй-

Примерные средние дозы внесения удобрений под главнейшие культуры в районах Нечерноземной зоны РСФСР (кг на 1 га, рекомендации ВИУА)


	Дерново-подзоли- етые суглинистые						одзоли- счаные Серые лесные оподзоленные ч ноземы					
Культура		z	P ₂ O ₈	K20	наров, т на 1 га	Z	P ₂ O ₈	К,0	навов, т на 1 га	z	P,0,8	K ₂ O
Зерновые озимые по за-									<u> </u>			
нятым парам:	l	,,		,,			20	00	İ		١,,	١,,
без органических удобрений	—	40	60	40	—	60	60	60		30	40	40
с органическими	20	20	40	20	20	40	40	40	20	20	30	30
удоб рениями			۱	١								
по пласту трав	—	20	60	40		30	50	60		20	40	40
Яровые зерновые (без	—	30	30	20	-	60	40	40		30	3 0	30
кукурузы): горох (зерно)	l	15*	60	40	l	20*	40	40	l	l	40	40
горож (зерно)	_	30	60	40		40	40	40		20	40	40
просо	l —	30	40	40	_	40	40	40		20	40	40
Лен-долгунец по кле-	—	30	60	70	_	40	60	80	 	20	60	70
верицу					ĺ							l
Картофель:	90	,,	,,	,,	90	60	,,	,,	ω.		,,	٠,,
по навозу без навоза	20	40 60	40 60	40 60	30	60 60	40 60	40 90	20	60 40	40 60	40 40
оез навоза	_	00	VU	00		00	00	30	-	40	"	40

^{*} Азотные удобрения вносятся только на малоплодородных почвах.

ственной продукции, исходя из фактической обеспеченности туками (табл. 44).

Средние рекомендуемые зональные дозы удобрений должны корректироваться применительно к конкретным условиям хозяйства в зависимости от содержания подвижных питательных веществ в почве.

Для каждой зоны нашей страны приняты унифицированные методы определения содержания в почве подвижных элементов питания при проведении агрохимического обследования земель. Обеспеченность азотом оценивается по количеству легкогидролизуемого азота по методу Тюрина и Кононовой (этим методом определяется содержание не только минерального азота, но и той части органического азота почвы, который может минерализоваться в первую очередь) и по нитрифицирующей способности почвы, определяемой путем компостирования ее в условиях, наиболее благоприятных для процесса нитрификации. Содержание подвижных форм фосфора и калия в дерново-подзолистых, серых лесных почвах и некарбонатных черноземах определяется в одной вытяжке (0,2 н. соляной кислоты по Кирсанову) пли калия отдельно по Масловой (в 1 н. углеаммонийной вытяжке). На карбонатных черноземах, каштановых, бурых и сероземных почвах количество подвижного фосфора и калия измеряется

Рпс. 11. Картограмма обеспеченности почв хозяйства подвижным фосфором.

Группировка почв по агрохимическим показателли (обеспеченность подпижными формами элементов

		Hď		4,5 4,6 4,6 5,1—5,5 5,6—6,0 >6,0
		Нитрифи- пирую-	щая спо- собность	0,5 0,8—1,5 1,5—3 >6
	z	ноно-	рн 6,0	3 4 4 4 5 7 7 7 10 >10
		по Тюрину и Кононо- вой	pH 5-6	3 4 4 6 6 8 8 8 12 >12
		по Тюрі	pH 5,0	$\begin{array}{c} 4 \\ 5 \\ 5 \\ 7 \\ -10 \\ 10 \\ -14 \\ > 14 \end{array}$
с почвы)		по насловой по насловой по насловой по масловой по масловой		10 10-20 20-30 30-40 40-60 > 60
на 100 п	K _p O			$\begin{array}{c} 2 \\ 2 - 4 \\ 5 - 8 \\ 9 - 12 \\ 13 - 19 \\ > 19 \end{array}$
питания в мг на 100 г почвы)				4 4—8 8—12 12—17 17—25 >25
пита				5 10—15 15—20 20—30 >30
		по Ар-	рсниусу	8 8-15 15-30 30-45 45-60 > 60
	P_2O_5	по Ма- чигину		$\begin{array}{c} 1 \\ 1-1,5 \\ 1,5-3 \\ 3-4,5 \\ 4,5-6 \\ > 6 \end{array}$
	Ъ	до Чи-	рикову	$\begin{array}{c} 2\\ 2-5\\ 5-10\\ 10-15\\ 15-20\\ > 20 \end{array}$
		по Кир-	санову	$\begin{array}{c} 2,5 \\ 2,5-5 \\ 5-10 \\ 10-15 \\ 15-25 \\ > 25 \end{array}$
		Класс почвы		1 II II I

в вытяжке 1% углекислого аммония по Мачигину. Степень кислотности почвоценивается по значению рН солевой вытяжки.

По результатам анализа почвы при агрохимическом обследовании зональные лаборатории оформляют и передают хозяйствам картограммы, в которых на планах землепользования выделяются площади различной кислотностью и обеспеченностью подвижными формами питательных веществ в соответствии с существующими градациями (рис. 11).

Содержание подвижных форм позволяет судить 0 степени обеспеченности почвы элементами питания и потребности в удобрениях. Градации почв по степени обеспеченности азотом, фосфором и калием разрабатываются. опытными и научными учреждениями путем сопоставления данных агрохимического анализа почвы с результатами полевых опытов, в которых изучается эффективность соответствующих видов удобрений.

Согласно принятой «Всесоюзной интерзональной классификации почв по агрохимическим показателям», все почвы в зависимости от кислотности и содержания подвижных форм питательных веществ подразделяются на шесть классов. Показатели III класса характеризуют среднюю обеспеченность почвы элементами питания для зерновых культур, аIVиV соответственно для более бовательных к уровню пропашных и овощных культур (табл. 45). При большем, чем среднее, содержании питательных веществ в почве

рекомендуемая доза удобрений под сельскохозяйственные культуры уменьшается, а при меньшем — повышается. Обычно при обеспеченности почвы подвижными формами элементов питания на один класс ниже либо выше, чем средняя, доза изменяется на 25—30%, а на два класса — в 1,5 раза. Поправочные коэффициенты к средним рекомендуемым дозам удобрений в зависимости от обеспеченности почвы элементами питания уточняются зональными научными агрохимическими учреждениями для различных сельскохозяйственных культур применительно к условиям их возделывания (табл. 46).

Таблица 46 Примерные поправочные коэффицпенты к средним дозам удобрений под различные культуры в занисимости от содержания подвижного фосфора и калия на дерново-подзолистых и серых лесных почвах

Содержание в почве	Зерновые	Зернобобо- вые и травы	Лен	Пропашные	Овощные				
Фосфорные удобрения									
Очень низкое Низкое Среднее Повышенное Высокое Очень высокое		1,0 0,7—0,9 0,6—0,5	1,0 0,6—0,7 0,5	не обеспечен 1.3—1.5	ния урожан ны 1,2—1,5 1,0 0,6—0,8				
	Ка	лийные у	добрения	4					
Низкое Среднес Повышенное Высокое	Не вносят	1,5 1,0 0,7—0,8 0,5—0,6	1,5—2,0 1,0—1,5 0,8—1,0 0,7—0,8	1,3—1,5 1,0 0,6—0,8 0,5	1,5—2,0 1,3—1,5 1,0 0,6—0,8				

Результаты агрохимического обследования выявили существенные различия в уровне обеспеченности почв нашей страны подвижными формами элементов питания (табл. 47).

Значительно различаются по уровню плодородия и содержанию подвижных питательных веществ и почвы отдельных полей хозяйств. При разработке системы удобрения используются средние взвешенные показатели обеспеченности почв полей севооборота, а различия в содержании подвижных форм элементов питания по каждому обрабатываемому участку учитываются при составлении годовых планов применения удобрений.

Зональными агрохимическими лабораториями и научными учреждениями страны постоянно проводятся широкие исследования по выяснению взаимосвязи между агрохимическими показателями почвы и эффективностью удобрений. В полевых опытах изучаются дозы основных элементов питания для планируемого уровня урожайно-

Соотношение плок адей нахотных ноче с различным содержанием подвижного фо фора и обменного калия по зонам страны (% ко всеи плокади нашии) (сводные данные ЦИНАО, 1972)

		I	Ілощадь па	хотных	почи		
Почвы	соде	доп эпивис вцофорф		содержание подвижного калия			
	низ-	среднее	высокое	ниэ- 1(00	среднее	высокое	
Н	ечер	ноземн	ая зопа	ı			
Де рново-п одзол ис ты е	68,7	20,8	10,5	46,5	30,6	22,9	
	Лесос	степная	н зона				
Серые лесные оподзоленные черноземы	39,1	37,8	23,1	13,8	24,7	61,5	
	Сто	епная з	она				
Тппичные, обыкновенные и южные черноземы	49,7	33,0	17,3	6,1	23,4	70,5	
	Сухо	степная	т зопа				
Каштановые	62,8	31,3	5,9	3,3	15,7	81,0	
	Пуст	нвныя	зона				
Сероземы, сероземно-луго- вые и луговые	75,0	18,0	7,0	17,1	27,1	55,8	

сти основных сельскохозяйственных культур, возделываемых в конкретных почвенно-климатических условиях при различной обеспеченности почвы подвижными формами питательных веществ. На основании результатов таких опытов разрабатываются рекомендации по применению удобрений на планируемый урожай с учетом агрохимических показателей почвы (табл. 48).

Обобщение многочисленных полевых опытов позволило также установить оптимальные дозы и соотношение NPK для получения заданного уровня урожайности важнейщих сельскохозяйственных культур в основных районах их выращивания (табл. 49).

Для ориентировочного установления потребности в минеральных удобрениях на планируемую урожайность могут использоваться различные расчетные методы, в основу которых положены вынос культурами элементов питания и коэффициенты использования питательных веществ растениями из удобрений и почвы.

Вынос основных элементов питания с урожаем отдельных культур может значительно различаться в зависимости от условий выращивания. Поэтому для расчетов лучше пользоваться данными о

Рекомендуемые дозы удобрений под сельскохозяйственные культуры на дерново-подзолистых суглинистых почвах Волго-Вятского района (по комплексному методу)

- <u>-</u> -			Дозы	фосфор		обре-		лийных	
ожа	.00-	T- 82,		ний, кг	Д. В.		рений	, кг д. в). ₁
са в Стар Стар	аничесь	тных й (дейс вещесті	до 5	5-10	1015	15-20	до 5	5-10	15
Иланирусмая урожай- ность (ц с 1 га)	Доза органическо- го удобрения (т на 1 га)	Доза азотных удобрений (цейст- вующего вещества, кг)	двии	еченнос кным фе на 100 г	сфором			ность по и калием, почи	МГ
	S	Ічмень,	яров	ая п	пени	ца, о	вес		
12—14 16—20	-	30-40 50-60	40 60	30 50	20 30	10 10	30 40	20	-
25 - 30	=	80—90	*	80	60	20	60	40	30
35—40	1 —	90	. •	90	80	60	l —	80	60
Озима	я рожі	ь по гор		о-овс цару	яном	иу и	впко-о	ВСЯН	ому
12—14 16—18	-	60 80	60 80	40 60	30 40	20 20	60 60	40	30 30
20-25	40	60	90	60	40	2 0	80	60	40
		Кар	тофе	ль по	нав	озу			
140—160	40	60-80	-	60	40	20	80	60	60
180—200 220—250	40 60	90—100	_	80 90	60 80	40 60	120 140	90 120	60 90
Ко	рмовые	корнеп	лоды	(брюк	ва, св	екла,	морковь,	турнен	C)
300-400	60	80-90	-	80	60	40	100	90	90
500600	80	100—120	ı —	90	80	60	140	120	90
		Лен-до	лгун	ец по	кле	верп	щу		
15—20 (3—4)	_	20	80	60	40	40	60	60	40
25—30 (5—6)	_	30	90	80	60	40	90	80	60
35—40	-	30—40	_	90	80	60	120	100	80
(78)	1								

^{*} При низком содержании фосфора и калия данная урожайность не планируется.

выносе, полученными в хозяйстве или в аналогичных почвенных условиях ближайшими опытными учреждениями. Допустимо применение справочных данных о среднем выносе NPK на единицу урожая, опнако при этом возрастает условность расчета.

Оптимальные соотношения элементов питания и дозы удобрсний, рекомендуемые агрохимической службой по основным зонам страны и для заданной урожайности (данные ЦИНАО)

			
Районы возделывания	Количество обобщенных опытов	Оптимальные дозы питатель- ных веществ (в кг на 1 га)	Соотношение N: P ₂ O ₅ : K ₂ O
Озимая пшен	ица (35—40 ц	зерна с 1 га)	_
Северный Кавказ Центральные черноземные обла- сти	131 52	140 140	1:1:0,3 1:1,2:1,2
Донецко-Приднепровский район Юго-Западный Южный	426 276 205	135 155 130	1:1,4:1 1:1,3:1 1:1,2:0,7
Озимая рон	сь (20—25 дзе	рна с 1 га)	
Центральный Юго-Западный Литовская ССР Белорусская ССР	52 71 34 170	170 180 180 200	1:1:0,8 1:0,7:1,3 1:1:1 1:1:1,3
Яровая пшен	ица (15—20 ц	зерна с 1 га)	
Поволжский Западно-Сибирский Восточно-Сибирский Казахская ССР (без юга) Казахская ССР (юг)	331 216 206 168 115	110 115 105 55 120	1:1,2:0,5 1:1,1:0,7 1:1,2:0,4 0:1:0 1:1,4:0,6
Картофель (по фону с кл	органических уд убней с 1 га)	цобрений) (200—2	250 ц
Центральный Юго-Западный Белорусская ССР	229 170 210	205 225 225	1:0,7:0,8 1:0,7:0,8 1:1,4:1,4
Сахарная свекла	(250—300 д ко	рнеплодов с 1 га	a)
Центрально-Черноземный Северо-Кавказский Донецко-Приднепровский Юго-Западный	141 70 293 386	200 155 200 220	1:1,25:1,1 1:1,3:1,1 1:1:0,9 1:1,1:1,1
Хлопчатник (х	клопок-сырец, 2	5—30 цс 1 га)	
Узбекская ССР Таджикская ССР Туркменская ССР Азербайджанская ССР	39 70 54 162	340 340 290 275	1:0,7:0,14 1:0,5:0,3 1:0,6:0,2 1:1:0,5

Возможные коэффициенты использования питательных элементов из удобрений в отдельные годы и за ротацию севооборота

		Коэффициенты использования, %				
Удобрения	Годы действия	N	P2O5	K20		
Минеральные	За ротацию в том числе за:	70—80	30—50	70—90		
	1-й год 2-й » 3-й »	60—70 3—5	15—30* 10—15 5—10	60—70 10—15		
Органические	За ротацию в том числе за:	50—60	50-60	8090		
	1-й год 2-й » 3-й »	20—30 15—20 10—15	30—40 10—15 до 5	50—60 10—20 до 10		

^{*} В зависимости от формы и способа виссения: из гранулированных форм 20-30%, из порошкообразных 10-20%; при локальном виссении выше, чем при разбросном.

Коэффициенты использования азота, фосфора и калия из навоза и минеральных удобрений (средние данные приведены в табл. 50) также подвержены существенным колебаниям в зависимости от культуры, почвенно-климатических условий, дозы, времени внесения и способа заделки удобрений и т. д.

Для определения доз удобрений на планируемую прибавку урожайности необходимо располагать данными об уровне урожайности без удобрений (или при незначительном их количестве).

Примеры расчета потребности в удобрениях на планируемую прибавку урожайности по выносу элементов питания с учетом обеспеченности почвы подвижными формами питательных веществ, разработанного Почвенным институтом АН СССР, даны в таблице 51.

Подобным образом можно рассчитывать дозы удобрений на всю планируемую урожайность.

Предлагаемые различными авторами расчетные методы доз удобрений на планируемую урожайность включают оценку возможного выноса элементов питания за счет подвижных форм из запасов почвы. Однако коэффициенты использования питательных веществ из почвы различными культурами могут колебаться в широком интервале — для фосфора от 2 до 20% и более, а для калия — от 10 до 55%. Следовательно, эти методы могут быть применимы лишь при наличии экспериментально установленных коэффициентов использования элементов питания из подвижных форм в почве для отдельных культур в конкретных почвенно-климатических условиях.

Различные расчетные методы целесообразно использовать для проверки правильности разработанной на основе экспериментальных

Таблица 51 Примеры расчета потребности в удобрениях по выпосу питательных веществ планируемым урожаем и обеспеченности почвы отдельными элементами питания (по Д. В. Федоровскому)

Показатель	Пшен	ица озимая на подзолистой по	дерново- чае	Ку	куруза на сил	oc	Капуста (на пойме)		
Планируемая урожайность (ц с 1 га)		20		· -	300			600	
Урожайность культуры на неудобренных полях (сред-	,	12			135		İ	300	
нее за 2—3 года) (ц на 1 га) Необходимо обеспечить при- бавку (ц на 1 га)		8			165			300	I
Примерный вынос (кг) с урожаем на 1 т основной про-	N 35	P ₂ O ₅ 10	K ₂ O 24	N 5,2	P ₂ O ₅ 1,0	K ₂ O 2,8	N 2,5	P ₂ O ₈ 1,0	K ₂ O 3,0
дукции Для получения прибавки вынос должен возрасти на	28	8	19	86	16	46	75	30	100
(кг) Внесение навоза (т на 1 га) Содержание элементов в навозе (кг)	Нет			50	10 25	60		Нет	
Процент усвоения в первый				25	30	7 5		ļ	,
год Будет использовано на на-	0	0	0	12,5	7,5	45	0	0	0
воза (кг) напо увеличить ва счет вне- сения минеральных удоб-	28	8	19	72	8,5	1	75	30	100
рений (иг) Использование минеральных удобрений за цервый	65	20	70	65	20	70	65	20	70
год (%) Следует внести питательных веществ (кг)	43	40	27	111	42,5	1	115	150	143
Содержание питательных вещести в туках	Аммиач- ная селит- ра, 34%	Суперфосфат, 20%	Хлористый калий, 60%	Аммиач- ная селит- ра, 34%	Суперфосфат, 20%	Хлори- стый ка- лий, 60%	Аммиач- ная селит-	Супер- фосфат, 20%	Хлори- стый ка- лий, 60%
Рассчитанная по выносу до-	1,2	2,0	0,5	3,3	2,1	0,5	pa, 34% 3,4	7,7	2,5
эа туков (ц на 1 га) Обеспеченность почвы от- дельными элементами пи-	Низ кая	Низкая	Низкая	Низкая	Средняя	Низкая	Низкая	Очень высокая	Очен ь низка я
танил Возможное изменение	o	0	0	0	Снизить	0	0	Снизить	Усилить
Рекомендуемая доза туков в соответствии с агрохимической картой (ц на 1 га)	1.2	2,0	0,5	3,3	1,5	0,5	3,4	1.0	на 25% 3,0

и нормативных доз системы удобрения под отдельные культуры севооборота и дли оценки возможных прибавок урожайности при принятых нормах органических и минеральных удобрений.

Правильность принятых доз и соотношений удобрений в севооборотах может быть проверена сопоставлением прихода и расхода элементов питания, т. е. определения валового баланса питательных веществ.

Сопоставление выноса элементов питания с урожаем культур за севооборот с их количеством в составе внесенных органических и минеральных удобрений позволяет в общем представить степень восполнения расхода питательных веществ из почвы, но не раскрывает количественную сторону фактического использования элементов питания сельскохозяйственными культурами из удобрений. Валовой баланс успешно использовался для общей оценки расхода из почвы и поступления в нее элементов питания при ограниченном применении удобрений, когда урожаи формировались в основном за счет почвенного плодородия и биологического азота.

В целях оценки эффективности системы удобрения в севообороте (или хозяйстве) необходимо учитывать использование элементов питания сельскохозяйственными культурами из удобрений за ротацию, а в отдельных звеньях севооборота — коэффициенты использования в первые 3 года из внесенных органических и минеральных удобрений. Эти данные устанавливаются на основе обобщения результатов многолетних полевых опытов с удобрениями в севооборотах применительно к определенным почвенно-климатическим условиям.

При оценке складывающегося баланса элементов питания в севообороте или отдельных его звеньях должны учитываться уровень потенциального почвенного плодородия, состав возделываемых культур, степень усвоения растениями внесенных с удобрениями элементов питания и другие факторы.

Так, на дерново-подзолистых и других малогумусированных почвах, особенно легких, надо стремиться к превышению прихода азота с удобрениями над выносом не менее чем на 15—20%. На богатых органическим веществом и, следовательно, азотом почвах (например, на осущенных низинных торфяниках и мощных черноземах) допустим дефицит этого элемента. На богатых калием тяжелых почвах и сероземах баланс по калию может иметь дефицит до 20% (конечпо, необходимо учитывать наличие калиелюбивых культур в севообороте), а на песчаных и супесчаных почвах дефицит этого элемента недопустим. Баланс по фосфору должен быть всегда положительным с превышением поступления над выносом не менее 50%. При малом содержании подвижных форм фосфора в большистве почв нашей страны и низком усвоении фосфора из удобрений для поддержания и улучшения почвенного плодородия возмещение этого элемента должно быть в 2—2,5 раза больше, чем вынос с урожаем.

Следовательно, при разработке системы удобрения в севообороте должно предусматриваться использование естественного плодородия почвы, а при более высоком уровне химизации земледелия— не

только восстановление плодородия почвы, но и его расширенное воспроизводство.

Балансовый метод применяется также для оценки потребности в удобрениях и характеристики складывающегося круговорота питательных веществ в хозяйстве по природно-экономическим районам, административным областям и в целом по стране.

Расчет внутрихозяйственного баланса, как и баланса в севообороте, включает сопоставление выноса питательных веществ с урожаем (всех видов продукции, убираемой с поля) с возмещением их с внесенными удобрениями. Эти статьи баланса имеют наибольший удельный вес в структуре потерь и возврата элементов питания. В полном хозяйственном балансе могут учитываться, кроме выноса с урожаем, потери питательных веществ из удобрений и почвы, а в приходной статье — возмещение не только с удобрениями, но и семенами, атмосферными осадками, бобовыми культурами (азота).

При значительном удельном весе многолетних бобовых культур в структуре посевных площадей существенной статьей прихода азота является симбиотическая азотфиксация. Однако расчеты показывают, что в масштабе страны даже при доле бобовых культур около 10% от общей площади пахотных земель на фиксированный азот атмосферы приходится лишь около 2% общего прихода азота.

Во внешнехозяйственном балансе сопоставляются размеры отчуждения элементов питания с товарной продукцией и их прихода с органическими и минеральными удобрениями, завозными кормами и семенами.

Балансовые расчеты в масштабе страны производятся суммированием имеющихся разработок по зонам и республикам либо на основе данных о средневзвешенных размерах выноса элементов питания каждой культурой (с учетом зональных особенностей в выносе на единицу продукции), существующей или планируемой структуры полевых площадей, урожайности и обеспеченности органическими и минеральными удобрениями.

Балансовые разработки применяются в дополнение к опытным данным по эффективности удобрений в различных почвенно-климатических зонах для научного обоснования распределения минеральных удобрений между природно-экономическими районами, административными зонами и хозяйствами, а также по культурам. Недостатком балансового метода является необходимость использования большого количества расчетных нормативов при определении отдельных статей приходной и расходной части баланса. При балансовых расчетах более надежные результаты могут быть получены при определении размеров выноса, коэффициентов использования элементов питания из удобрений и других показателей в полевых опытах с удобрениями в типичных севооборотах и конкретных почвенно-климатических условиях.

Таким образом, определение оптимальных доз удобрений производится на основе экспериментальных, нормативных и балансовых методов.

При разработке системы удобрения, исходя из фактической обеспеченности минеральными удобрениями, чаще всего применяются средние зональные нормативные дозы, уточняемые по агрохимическим показателям почвы. Для ведущих культур севооборотов в этом случае возможен расчет дозы удобрения на планируемую урожайность различными методами.

Разработка системы удобрения на высокую планируемую урожайность всех культур севооборота может осуществляться в условиях обеспечения минеральными удобрениями по потребности. Такой уровень поставок удобрений достигнут в основных районах возделывания ведущих технических культур, а также в промышленных районах с высокой плотностью населения. В таких условиях возрастает роль расчетных, прежде всего балансовых, разработок при определении доз удобрений.

Наиболее надежные результаты при определении оптимальных доз удобрений могут быть получены на основе данных полевых опытов с удобрениями, особенно многолетних, в сочетании с разнообразными расчетными методами проверки правильности соотношения между отдельными элементами питания и предварительной агроэкономической оценки.

При планировании уровня урожайности сельскохозяйственных культур и выборе доз удобрений должен учитываться весь комплекс природио-экономических факторов, организационно-хозяйственные условия и особенности питания растений. С возрастанием уровня химизации все большее значение приобретает повышение общей культуры земледелия, строгое соблюдение агротехники и осуществление мелиоративных мероприятий. Огромную роль играет также селекция и внедрение в производство высокоурожайных сортов сельскохозяйственных культур, обладающих повышенной отзывчивостью на удобрение.

СВОЙСТВА УДОБРЕНИЙ, СРОКИ И СПОСОБЫ ИХ ВНЕСЕНИЯ

При построении системы удобрения в севообороте важно учитывать растворимость и физиологическую реакцию удобрений, подвижность внесенных с удобрениями элементов питания в почве, содержание других компонентов (Na, Cl, Mg), особенности взаимодействия с почвой, продолжительность действия и другие свойства, которые в значительной степени определяют дозы, сроки и способы их внесения. От правильного выбора видов и форм удобрений в соответствии с почвенно-климатическими условиями и биологическими особенностями растений зависит их действие не только на урожайность, но и на качество сельскохозяйственной продукции.

Годовая доза удобрений под отдельные культуры может вноситься в разные сроки и разными способами. Сроки и способы внесения удобрений должны обеспечивать наилучшие условия питания растений в течение всей вегетации и получение наибольших прибавок урожайности на каждый центнер внесенных удобрений. По срокам

внесения различают удобрение допосевное, или основное, припосевное (в рядки, гнезда, лунки) и послепосевное, или подкормка в период вегетации.

В основное удобрения и, как правило, большую часть общей дозы применяемых под данную культуру минеральных удобрений. Цель основного удобрения — обеспечить питание растений в течение всего периода вегетации. До посева удобрения вносят разбросным способом туковыми сеялками (минеральные удобрения, известь), навозоразбрасывателями (органические удобрения) и другими машинами (рис. 12). Перспективным способом применения удобрений до посева, особенно суперфосфата, является ленточное, локальное внесение. При локальном размещении фосфор суперфосфата меньше закрепляется в почве и повышается усвоение его растениями.

Основное фосфорно-калийное удобрение вносят преимущественно осенью и заделывают под глубокую зяблевую вспашку. При этом удобрения попадают в более влажный и менее пересыхающий слой почвы, где развивается основная масса деятельных корней. При глубокой заделке удобрения лучше используются растениями. Особое значение имеет глубокая заделка допосевного фосфорного удобрения, поскольку фосфор в почве практически не передвигается вследствие химического связывания.

В более увлажненных районах на тяжелых почвах, где проводят перепашку зяби, если удобрения не удалось внести с осени, фосфорно-калийные удобрения можно вносить весной.



Рис. 12. Разбрасыватель миперальных удобрений.

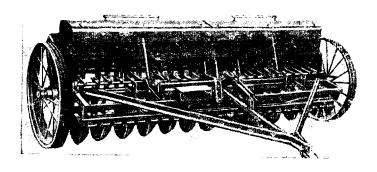


Рис. 13. Комбицированная сеялка для посева зерновых и вернобобовых культур с одновременным внесением удоброний в рядки.

Азотные удобрения при орошении и в районах с большим количеством осадков, особенно на легких песчаных и супесчаных почвах, необходимо вносить весной с заделкой под культиватор. При этом ограничиваются потери нитратного азота удобрений, а также нитратов, образующихся при нитрификации аммиачных форм азотных удобрений и мочевины. На тяжелых почвах в районах с ограниченным количеством осадков в осенне-зимний период аммиачные твердые и жидкие удобрения, мочевина могут вноситься с осени. На легких почвах, обладающих малой емкостью поглощения, целесообразно калийные удобрения во избежание потерь калия от вымывания вносить вместе с азотными удобрениями весной под культивацию, а под пропашные культуры часть этих удобрений может переноситься в подкормку.

При разбросном внесении удобрений под плуг или культиватор они распределяются на большой площади и перемешиваются с большим объемом почвы, поэтому вблизи слаборазвитых корней молодых растений может оказаться недостаточное количество питательных веществ.

Для лучшего обеспечения питания растений в пачальный период роста наряду с основным удобрением необходимо вносить небольшие дозы удобрений одновременно с посевом в рядки или гнезда. Припосевые в несение удобрений проводится специальными комбинированными сеялками (рис. 13).

Для всех сельскохозяйственных культур особенно большое значение имеет внесение в рядки гранулированного суперфосфата, так как в начальный период роста растения особенно чувствительны к недостатку фосфора. Под зерновые культуры гранулированный суперфосфат может быть внесен обычными зерновыми сеялками в смеси с семенами.

Под сахарную свеклу, картофель, кукурузу и некоторые другие культуры вместе с суперфосфатом при посеве вносят также небольшие дозы азотных и калийных удобрений. В этом случае удобрения

следует вносить комбинированными сеялками. Под культуры, чувствительные к высокой концентрации питательных веществ вблизи корней, например кукурузу, лучше удобрения вносить на некотором расстоянии $(2-3\ cm)$ сбоку или ниже семян, с тем чтобы они отделялись от удобрений прослойкой почвы.

Удобрения, внесенные в рядки или гнезда на глубину посева семян, используются большинством растений только в первый период роста, поэтому доза их должна быть невысокой. При внесении в лунки или в борозды удобрений под картофель и томаты питательные вещества могут использоваться более длительное время, особенно при достаточной влажности почвы. Дозы припосадочного удобрения под эти культуры могут быть увеличены.

Припосевное удобрение, рассчитанное на обеспечение растений легкодоступными формами элементов питания в начальный период их жизни, имеет важное значение и для последующего развития растений. Благоприятные условия питания с начала вегетации позволяют молодым растениям сформировать более мощную корневую систему, что обеспечивает в дальнейшем лучшее использование элементов питания из почвы и основного удобрения. Благодаря рядковому удобрению растения быстрее развиваются и легче переносят временную засуху, меньше повреждаются вредителями и болезнями, лучше подавляют сорную растительность.

Припосевное внесение небольших доз минеральных удобрений — наиболее эффективный способ их применения, обеспечивающий более высокие прибавки урожайности на каждый центнер удобрения. Особенно эффективно внесение в рядки гранулированного суперфосфата (табл. 52).

Таблица 52 Эффективность рядкового удобрения в различных почвенно-климатических зонах (данные ВИУА)

Почвы	Культуры	Урожайность на контроле (ц с 1 га)	Прибавка урожай- ности (ц на 1 га)	Оплата 1 ц супер- фосфата прибавкой урожайности эсрпа (ц на 1 га)
Дерново-подзолистые (52 опыта) Черноземы, серые леспые и каштановые (117 опытов) В средпем по СССР (169 опытов) Дерново-подзолистые (29 опытов) Черноземы, серые лесные и каштановые (60 опытов) В среднем по СССР (89 опытов)	Озимые » Яровая пше- ница То же » »	20,5 22,2 21,6 16,2 15,8	3,4 2,8 3,0 3,0 2,0 2,3	6,8 5,6 6,0 6,0 4,0 4,6

При систематическом применении высоких доз удобрений содержание подвижных форм элементов питания, в том числе фосфора, постепенно возрастает и действие рядкового удобрения может снижаться. Рядковое применение суперфосфата имеет важное значение при выращивании зерновых и других культур в засушливых районах страны, где используется ограниченное количество туков, а фосфор является часто элементом, находящимся в первом минимуме.

Подкормки в период вегетации применяются в дополнение к основному и припосевному удобрению с целью усиления питания растений в периоды наиболее интенсивного потребления ими питательных веществ.

Высокий эффект дает ранневесенняя подкормка азотными удобрениями озимых культур, которая стала обязательным приемом в различных районах страны.

Для улучшения азотного питания льна в период максимального потребления этого элемента может применяться подкормка азотными удобрениями. Хлопчатник основное количество азота и других элементов питания поглощает в период от начала цветения до массового созревапия, поэтому большая доля азотных удобрений и часть калийных применяются в подкормки в сочетании с поливами и при проведении междурядных обработок.

Подкормки широко применяются на многолетних сеяных сенокосах и пастбищах, естественных кормовых угодьях. Перенесение части азотных и калийных удобрений в подкормку пропашных культур целесообразно на легких почвах в увлажненных районах с высоким уровнем грунтовых вод. В подкормку целесообразно выделять часть удобрений при высоких их дозах под пропашные культуры.

Перенесение части удобрений из основного внесения до посева в подкормку при средних дозах под картофель, сахарную свеклу и другие пропашные культуры не дает эффекта по сравнению с внесением всего количества удобрений до посева.

Действие удобрений, внесенных в подкормку при неглубокой заделке в междурядья пропашных культур, в сильной степени зависит от условий увлажнения в течение вегетации. В более увлажненных районах или при орошении эффективность подкормки значительно выше, чем в районах с недостаточным увлажнением. Наиболее целесообразно применение в подкормку легкорастворимых азотных удобрений, а также богатых азотом местных удобрений — навозной жижи, птичьего помета. Роль подкормок возрастает, если по каким-либо причинами удобрения до посева не применялись либо вносились в недостаточном количестве.

Удобрения вносят в подкормку или поверхностно вразброс (ранневесенняя подкормка озимых, подкормка клевера и других многолетних кормовых культур, льна) или в междурядья пропашных и овощных культур с заделкой на разную глубину при последующей междурядной обработке или культиваторами-растениепитателями (рис. 14). Поверхностное или неглубокое внесение в подкормку фос-

форных и калийных удобрений менее эффективно, чем впесение с заделкой в почву под вспашку.

В засушливых районах без орошения и в годы с недостаточным количеством осадков подкормки часто не оказывают положительного действия на урожай либо даже снижают его.

В зависимости от планируемой урожайности, общей дозы удобрений и других условий под отдельные культуры могут применяться различные сочетания способов внесения удобрений. Для получения высокой урожайности хлопчатника, сахарной свеклы, кукурузы, овощных и некоторых других культур (при высокой общей дозе удобрений) необходимо применение всех трех способов внесения — до посева, при посеве и в подкормку. При этом удобрения размещаются в различных слоях почвы и поэтому обеспечивают лучшие условия питания растений в течение всего периода роста.

Для большинства культур чаще всего применяют основное удобрение в сочетании с припосевным. При ограниченном количестве минеральных удобрений в хозяйстве целесообразно прежде всего предусмотреть внесение удобрения наиболее экономным способом — местно (в рядки, гнезда) при посеве.

При построении системы удобрения необходимо учитывать организационно-экономические условия хозяйства и обеспеченность его удобрениями. Возможности хозяйства по приобретению минеральных удобрений, накоплению навоза, заготовке торфа и различных компостов, обеспеченность его рабочей силой, машинами для внесения удобрений и транспортными средствами имеют очень важное значение для реального осуществления правильной системы удобрения.

Ниже излагаются особенности удобрения важнейших сельскохозяйственных культур и приводятся примерные схемы построения системы удобрения в некоторых зонах страны.

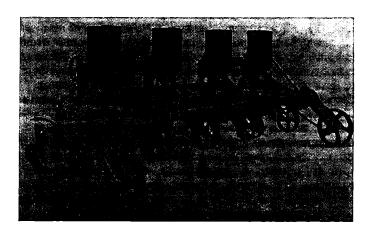


Рис. 14. Универсальный культиватор-растениепитатель.

ОСОБЕННОСТИ УДОБРЕНИЯ ВАЖНЕЙШИХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР И РАЗМЕЩЕНИЕ УДОБРЕНИЙ В СЕВООБОРОТЕ

Удобрение озимой пшениды и озимой ржи

Озимые зерновые культуры дают устойчивые урожаи в основных районах возделывания и обладают высокой отзывчивостью на применение удобрений.

Озимая пшеница — ведущая зерновая культура в степных и лесостепных районах Украины, Северного Кавказа, Центрально-черноземных областях РСФСР, Молдавии и Азербайджане. Значительно расширены площади под озимой пшеницей и в Нечерноземной зоне, где на известкованных почвах при соблюдении правильной агротехники и внесении удобрений она также дает высокие урожаи. Озимая пшеница более требовательна к нейтральной реакции среды и почвенному плодородию, чем озимая рожь. Вынос элементов питания у озимой пшеницы и озимой ржи на единицу товарной продукции близок (пшеница потребляет несколько больше азота). Однако пшеница обладает меньшей способностью усваивать питательные вещества из труднорастворимых соединений в почве и хуже переносит временное понижение температур и засуху, чем рожь. Вынос элементов питания зерновыми, как и другими культурами, определяется прежде всего уровнем урожайности.

Современные высокоурожайные сорта озимой ишеницы отличаются повышенной потребностью в снабжении минеральными веществами, особенно азотом. Так, при урожайности 45—50 ц с 1 га сорта Мироновская 808 и Безостая 1 выносят с гектара 135—215 кг N, 40—70 кг P₂O₅ и 90—180 кг K₂O.

Основные площади озимой ржи сосредоточены в Нечерноземной зоне на дерново-подзолистых и серых лесных почвах, а также выщелоченных и оподзоленных черноземах. Рожь, как и пшеница, очень отзывчива на известкование кислых почв, хотя лучше переносит подкисление и дает хорошие урожай в менее благоприятных для озимой пшеницы почвенно-климатических условиях. Новые высокопродуктивные, устойчивые к полеганию гибриды и сорта ржи по урожайности приближаются к лучшим сортам озимой пшеницы. При урожайности 30-40 ц рожь выносит с 1 га 110-125 кг N, 30-55 кг P_2O_5 и 80-125 кг K_2O .

В первый период — до кущения озимые потребляют относительно небольшое количество элементов минерального питания, но весьма чувствительны к их недостатку, особенно фосфора.

Основное количество питательных веществ озимые поглощают в сжатые сроки. Пшеница особенно интенсивно потребляет элементы питания от выхода в трубку до колошения — к началу колошения в растения поступает около 70% всего количества азота, фосфора и калия. Поступление питательных веществ практически заканчивается в период цветения. Рожь уже к началу цветения поглощает около 80% фосфора и почти все количество азота и калия (табл. 53).

6 N 888 161

Потребление озимыми зерповыми элементов питаппя

Фазы роста		Накопление питательных элементов (% от максимума)				
	N	P ₂ O ₆	K ₂ O			
Озимая п	шенпца					
Осенинй период и ранняя весна Начало колошения Цветение Начало созревания Полиая спелость	47 69 90 98 100	30 65 93 97 100	43 68 95 100 82			
Озимая	рожь					
Выход в трубку Цветение Восковая спелость	76 93 100	58 78 100	82 99 100			

Для хорошего роста и перезимовки озимых в осенний период должно быть обеспечено повышенное фосфорно-калийное и умеренное азотное питание. Усиленное питание озимых с осени фосфором и каллем способствует лучшему кущению растений, накоплению большого количества углеводов (сахаров), в результате чего возрастает их зимостойкость. При повышенном снабжении азотом с начала вегстации ухудивются условия перезимовки. Весной озимые рано трогаются в рост и требуют усиленного питания азотом. В почве же в этот период минеральных соединений азота очень мало, так как процессы мобилизации азота почвы протекают слабо из-за низких температур, а нитраты вымываются из корнеобитаемого слоя с осадками в течение зимы и ранней весной.

Для лучшего обеспечения озимых культур питательными веществами в течение всего периода их роста необходимы допосевное удобрение, припосевное или рядковое удобрение и подкормки.

Применение основного удобрения под озимые культуры зависит от предшественника. После всех предшественников, кроме клевера и отчасти зернобобовых, накапливающих азот в почве, требуется внесение до посева полного минерального удобрения. Его вносят в дозе 40-60 кг на 1 га P_2O_5 и K_2O и 20-30 кг N. Высокий эффект, особенно в Нечерноземной зоне, дает также внесение навоза или компостов в дозе 20-30 т на 1 га непосредственно под озимые.

По данным Географической сети ВИУА, прибавка урожайности озимых от применения навоза и компостов составляет: на дерново-подзолистых почвах в среднем из 145 опытов — 7,1 ц, на серых лесных почвах и выщелоченных черноземах в среднем из 338 опытов — 5,6 ц, а на обыкновенных и южных черноземах, по данным 92 полевых опытов, — на 3,1 ц па 1 га.

При посеве озимых после картофеля или кукурузы навоз следует вносить под предшественник. Если озимые идут после культур, которые убираются сравнительно рано и менее требовательны к навозу, то его надо вносить непосредственно под озимые после уборки предшествующей культуры.

Если под озимые вносят навоз, то калийные удобрения и азот с осени не применяются, за исключением почв легкого механического состава.

На бедных подзолистых почвах, если не вносится навоз, дозы минеральных удобрений необходимо увеличивать. При посеве озимых после клевера или зернобобовых можно вносить только фосфорные и калийные удобрения. На черноземных почвах, особенно в южных и юго-восточных районах страны, основное значение имсет внесение до посева фосфорных удобрений под вспашку.

Для лучшего обеспечения питания растений в начальный период роста основное удобрение необходимо дополнять впесением небольшого количества гранулированного суперфосфата (0,5 ц па 1 га) в рядки при посеве.

При посеве озимых после ячменя, картофеля, кукурузы и других культур, потребляющих много азота, эффективно внесение в рядки вместе с суперфосфатом небольших доз азотных удобрений (10—15 кг N на 1 га), особенно если до посева они не были внесены.

Для получения высокого урожая озимых исключительно большое значение имеет ранневесенняя подкормка их азотными удобрениями. Внесение в подкормку рано весной азота (30—50 кг иа 1 га) способствует лучшему росту озимых и обеспечивает значительное повышение урожайности.

По данным массовых производственных опытов в Нечерпоземной зопе, прибавка урожайности озимых от подкормки азотными удобрениями даже в пебольшой дозе — 20—30 кг на 1 га — составляет в среднем около 3—4 ц на 1 га, а во многих случаях при более высоком уровие агротехники прибавка получается значительно выше — 8—10 ц на 1 га.

Для подкормки озимых наряду с минеральными азотными удобрениями можно использовать также органические удобрения, содержащие азот в легкодоступной форме,— навозную жижу в дозе 3—5 т на 1 га, птичий помет — 3—5 ц на 1 га.

Подкормку озимых следует проводить в наиболее ранний срок, сразу после схода снега еще по неоттаявшей почве («по черспку»). При первой возможности поле необходимо забороповать.

Вместо весенней подкормки можно вносить удобрения поздней осенью, перед уходом растений под снег, особенно в засушливых районах. Однако из-за опасности смыва и потерь азота вследствие вымывания нитратов подзимняя подкормка применима только на полях с выровненным рельефом и при низком залегании грунтовых вод.

Применение фосфорно-калийных удобрений в подкормку вместе с азотными менее эффективно, чем внесение с осени с заделкой в почву до посева.

Действие минеральных удобрений на урожайность озимой и яровой ишеницы при орошении (Михайлов Н. Н., 1974)

Республики, природно-	ян урожай- без минсраль- добрений га)	Средние дозы удобрений (кг на 1 га)		удоб- 1 га)	Прибавка урожайно- сти от ука- занных доз удобрений		стия опти- удобрения (%) (уро- с удобре- %)	
экономнческие районы	Средиян у ность без ных удобц (ц с 1 га)	N	P2O6	K ₂ O	NP	NPK	Доля уча мального в урожас жайность нисм = 100	
Озпмая пшеница								
Южный район:)	1	1 1	l	1	ı	1	
Украинская ССР	35,6	120	90	30	16.6	16.9	32,2	
Молдавская ССР	31,8	120 120 120	120	0	17,4	13,2	26,8	
Северо-Кавказский район РСФСР	31,8 40,8	120	120	0	16,6 17,4 11,1	16,9 13,2 11,3	32,2 26,8 21,4	
	Ярова	я пш	ениц	a				
РСФСР:		ì	1 1	1	1.	I	1	
Поволжский район	26,4	90	90	0	10,0 5,4	8.4*	27,2	
Восточно-Сибирский	13,4	60	60	6 0	5,4	8,4* 7,6	36,2	
район -					,			
Казахская ССР (Восточно- Казахстанская область)	18,7	45	60	60	-	5,2	21,7	

^{*} Прибавка урожайности от азотных удобрений.

Суперфосфат и калийные удобрения целесообразно вносить в подкормку, если эти удобрения не были внесены до посева, а также на посевах озимых, сильно переросших с осени.

При определении доз фосфорных и калийных удобрений с осени и азотных в подкормку учитывается уровень планируемой урожайности, предшественник, почвенно-климатические условия. На орошаемых землях применяемые дозы минеральных удобрений значительно возрастают.

В зоне типичных, обыкновенных, карбонатных и южных черноземов, где сосредоточены основные посевы озимой пшеницы, применение средних доз NPK обеспечивает прибавку урожайности зерна от 4 до 6,5 ц на 1 га. Наиболее высокая и устойчивая эффективность удобрений под озимые проявляется в зоне достаточного увлажнения и в районах орошаемого земледелия (табл. 54). Окупаемость 1 кг NPK зерном достигает 7—10 кг.

Удобрение яровой пшеницы, ячменя и овса

Основные районы возделывания яровой пшеницы сосредоточены в засушливых восточных районах страны — Поволжье, Казахстане, на Урале и в Сибири. Значительные площади заняты яровой пшеницей в Центральном, Волго-Вятском и Центрально-Черноземном экономических районах. Яровая пшеница является важнейшей продовольственной культурой. Зерно яровой пшеницы содержит много белка (в среднем 16—18%) и обладает высокими мукомольными и хлебопекарными качествами.

Основные площади под ячменем размещены на черноземных почвах в лесостепной и степной зонах, а также в Нечерноземной зоне. Зона дерново-подзолистых почв благоприятна для возделывания пивоваренного ячменя. Как п пшеница, ячмень не переносит кислотности почвы, очень хорошо отзывается на известкование и применение удобрений.

Овес по сравнению с другими яровыми зерновыми культурами отличается меньшей требовательностью к теплу и плодородию почвы, лучше переносит кислые почвы, устойчив к кратковременным заморозкам. Овес обладает повышенной потребностью к влаге, особенно в первую половипу вегетации. Основные площади посевов овса расположены в Нечерноземной зоне и более увлажненных районах Сибири, Поволжья и Урала.

Вынос питательных веществ с 1 га при урожайности яровой ишеницы 30-35 ц составляет в среднем: N 140 кг, P_2O_5 50 кг и K_2O_75 кг; при урожайности ячменя 35-40 ц соответственно 110, 40, 80 кг; при урожайности овса 25 ц -80, 35, 80 кг.

Поглощение азота и зольных элементов у яровых зерновых культур заканчивается в основном ко времени колошения — цветения. Они имеют более короткий, чем озимые, вегетационный период и, следовательно, отличаются высокой интенсивностью потребления элементов минерального питания (табл. 55).

Таблица 55 Потребление яровыми зерновыми культурами основных элементов питания (% от максимального)

Фаза роста] =====================================	Пшениц	пда Ячмень				Овес		
	N	P ₂ O ₃	K20	N	P ₂ O ₃	K,0	N	P ₂ O ₃	K ₂ O
Колошение Цветение Полная спелость	71 97 90	68 100 93	88 100 67	71 96 100	56 74 100	73 100 64	51 82 100	36 71 100	54 100 83

Питание яровых зерновых культур фосфором и калием лучше всего обеспечивается при глубокой заделке фосфорных и калийных удобрений под зяблевую вспашку в сочетании с применением небольших доз суперфосфата в рядки.

В начальный период роста яровые зерновые культуры очень чувствительны к недостатку фосфора, поэтому при внесении небольшой дозы суперфосфата (0,5 ц на 1 га) в рядки урожайность возрастает на 2—2,5 ц на 1 га. Азотные удобрения вносятся под предпосевную обработку почвы. Азоту принадлежит ведущая роль в повышении урожая яровых зерновых культур на почвах Нечерноземной и Лесо-

степной зон. На черноземах Степной зоны и в юго-восточных районах страны, а также на предкавказских черноземах первоочередное значение имеют фосфорные удобрения.

Предшественниками яровой пшеницы, ячменя и овса в Нечерноземной зоне обычно являются озимые или пропашные культуры, удобренные павозом. Навоз может применяться под яровую пшеницу, идущую по чистым парам в Сибири, Казахстане и юго-восточных районах европейской части страны.

При посеве яровых зерновых культур после картофеля, сахарной свеклы, зерновых и других поздно убираемых культур потребность в удобрениях, особенно в азотных, всегда несколько выше, чем после рано убираемых предшественников. На дерново-подзолистых почвах для получения высокой урожайности яровых зерновых культур необходимо полное минеральное удобрение. Средняя доза удобрений на этих почвах — 30-45 кг N, P_2O_5 и K_2O на 1 га. При внесении полного минерального удобрения урожайность яровых зерновых культур в Нечерноземной зоне увеличивается на 5-8 ц на 1 га. При посеве яровых зерновых после многолетних бобовых трав и зернобобовых в Нечерноземной зоне и по чистым парам в засушливых районах потребность в азотных удобрениях снижается.

Наиболее высокое действие удобрений на яровые зерновые отмечаются в Нечерноземной зоне, в северо-западной части черноземной зоны и в орошаемых районах Поволжья и Северного Кавказа. На юге и юго-востоке эффективность удобрений из-за недостатка влаги снижается, здесь особое значение имеет рядковое внесение суперфосфата. При достаточном количестве удобрений основную часть их следует вносить до посева и небольшую часть (главным образом фосфорных) в рядки при посеве.

Эффективность удобрений, вносимых после посева яровых зерновых культур, снижается, так как в этом случае их приходится давать поверхностно и их действие определяется условиями увлажнения. Ранняя подкормка (с первым поливом) азотными удобрениями целесообразна при орошении, когда применяются более высокие дозы удобрений. С целью повышения белковости зерна пшеницы и улучшения его технологических и хлебопекарных качеств может применяться поздняя подкормка азотными удобрениями, прежде всего мочевиной.

Зерновые культуры занимают большие площади. За период с 1963 по 1974 г. удобряемая площадь в нашей стране увеличилась в два с половиной раза, а применение туков на гектар посева зерновых возросло до 36 кг питательных веществ. Одпако в целом по стране в 1974 г. туки вносились лишь па 48% посевов зерновых культур. Поэтому прежде всего необходимо более полное обеспечение удобрениями всех семенных посевов озимой и яровой пшеницы в Нечерноземной зоне и в более увлажненных районах Черноземной зоны, а также посевов твердых и сильных пшениц.

Особое значение в получении устойчивых высоких урожаев зерна имеет применение минеральных удобрений на орошаемых землях

Поволжья, Северного Кавказа, на юге Украины и на мелиорированных почвах в других районах страны. Площади орошаемых посевов зерновых культур превышают 2 млн. га, предусматривается дальнейшее их увеличение. Первоочередную роль в получении высоких урожаев зерновых культур в условиях орошения играет азот, затем фосфор. Потребность зерновых в калии в основных районах орошаемого земледелия в значительной степени удовлетворяется за счет запасов почвы, однако для достижения максимально возможной урожайности этих культур необходимо применение и калийных удобрений.

Удобрение кукурузы

Кукуруза возделывается в нашей стране как кормовая и зерповая культура. При выращивании на зерно в лесостепной и степной зоне урожайность кукурузы без орошения 60-70 ц, а при орошении— 100 ц и выше с 1 га. Средний выпос элементов питания на 10 ц зерна у кукурузы близок к другим зерповым культурам (25—30 кг N, 8—12 кг P_2O_5 и 22—27 кг K_2O). Однако общее количество питательных веществ, потребляемых кукурузой, может быть выше, чем корне- и клубнеплодами. Так, при урожайности 100 ц зерна с 1 га в условиях орошения вынос составляет более 250 кг N, 100 кг P_2O_5 и 360 кг K_2O , а при урожайности зеленой массы 500-600 ц с 1 га— 150-180 кг N, 50-60 кг P_2O_5 и 150-200 кг K_2O .

Кукуруза весьма требовательна к условиям почвенного плодородия. Она не переносит даже невысокую кислотность, поэтому на кислых почвах без известкования даже большие дозы органических и минеральных удобрений не обеспечивают хорошего урожая этой культуры.

Потребление кукурузой питательных веществ происходит в течение всего периода вегетации — до наступления восковой спелости зерна, однако наиболее интенсивное поглощение их наблюдается в период быстрого роста — выметывания метелок и цветения — за сравнительно короткий промежуток времени (табл. 56).

Таблица 56 Динамика накопления органического вещества и потребления основных элементов питания кукурузой (% от максимального) (данные Украинской сельскохозяйственной академии)

Фаза развитил	Сухое вещество	N	P ₂ O ₈	K ₂ O
4—5 листьев 9—10 листьев Появление метелки Цветение Молочная спелость Восковая спелость Полная спелость	0,1	0,3	0,2	0,2
	1,2	4,2	2,5	4,4
	24	44	33	69
	35	61	61	79
	80	89	88	95
	100	100	94	100
	94	93	100	82

Для увеличения урожайности кукурузы решающее значение имеет применение удобрений, а в Нечерноземной зоне и известкование кислых почв.

Кукуруза отзывчива на внесение навоза и других органических удобрений. По многолетним опытным данным, применение навоза в средних дозах повышает урожайность зерна кукурузы на дерновоподзолистых и серых лесных почвах Полесья Украины на 8—10 ц, в степной зоне Украины — на 3—5 ц, на черноземах Молдавии — на 5—6 ц на 1 га. С увеличением дозы навоза урожайность кукурузы возрастает, особенно при выращивании на силос на малоплодородных почвах Нечерноземной зоны. В этих условиях целесообразно возделывание кукурузы не в севообороте, а на постоянных участках при систематическом внесении высоких доз навоза и минеральных удобрений в сочетании с известкованием.

Совместное применение навоза и минеральных удобрений обеспечивает высокую урожайность кукурузы при меньших дозах навоза.

Органические удобрения (навоз, компосты) и большую часть минеральных удобрений вносят до посева кукурузы.

Органические удобрения лучше всего вносить с осени под зяблевую вспашку, но если их не удалось внести с осени, то в более увлажненных районах можно внести и весной под перепашку зяби.

При посеве кукурузы на окультуренных почвах или после хорошо унавоженных предшественников можно ограничиться внесением одних минеральных удобрений.

На дерново-подзолистых, серых лесных почвах и выщелоченных черноземах азотные удобрения наиболее эффективны в сочетании с фосфором и калием. На обыкновенных, мощных и карбонатных черноземах значительные прибавки зерна получаются от внесения фосфорных удобрений, а также фосфорных и азотных, калийные удобрения на этих почвах часто не оказывают положительного действия.

Фосфорные и калийные удобрения следует вносить вместе с навозом под зяблевую вспашку или перепашку зяби (в Нечерноземной зоне). Азотные удобрения в районах достаточного увлажнения лучше вносить весной под перепашку зяби, а в районах недостаточного увлажнения, — под предпосевную культивацию.

В первый месяц после всходов кукуруза растет очень медленно и поглощает ограниченное количество элементов питания. Однако недостаток питательных веществ, особенно фосфора, в этот период отрицательно сказывается в дальнейшем на росте и развитии растений, ухудшает использование элементов питания из основного удобрения и почвы. Поэтому для лучшего обеспечения растений питательными веществами в начальный период роста необходимо наряду с основным удобрением вносить небольшие дозы удобрений при посеве в гнезда или очагами вблизи гнезда. Особенно эффективно местное внесение в гнездо при посеве кукурузы небольших доз гранулированного суперфосфата — 1—2 г в каждое гнездо (20—40 кг на 1 га). На менее плодородных почвах вместе с суперфосфатом рекомендует-

ся вносить при посеве 15—20 кг на 1 га аммиачной селитры и 10—15 кг на 1 га хлористого калия, но в этом случае удобрения следует вносить отдельно от семян — на 4—5 см в стороны и на 2—3 см ниже, чтобы избежать вредного действия высокой концентрации почвенного раствора на молодые проростки кукурузы.

Для обеспечения кукурузы элементами питания в период наиболее интенсивного роста важное значение имеют подкормки. За вегетационный период проводят 1—2 подкормки. Наиболее эффективна ранняя подкормка перед первой междурядной обработкой. В первую подкормку на 1 га вносят 0,6—1 ц аммиачной селитры и 1—1,5 ц суперфосфата, а также богатые азотом органические удобрения—навозную жижу в дозе 3—5 т на 1 га и птичий помет по 3—5 ц на 1 га.

Вторая подкормка должна быть проведена до выбрасывания метелок. В это время вносят на 1 га 1 ц суперфосфата и 0,5 ц хлористого калия. На более слабых посевах во вторую подкормку в дополнение к фосфорным и калийным следует внести азотные удобрения. Удобрения в подкормку вносят культиваторами-растениепитателями с заделкой на глубину 8—10 см во влажный слой почвы.

Удобрение зернобобовых культур

Бобовые культуры (горох, соя, фасоль, вика и др.) благодаря развивающимся на их корнях клубеньковым бактериям способны усваивать азот воздуха и обычно не нуждаются в азотных удобрениях.

Зерно бобовых культур (как и солома) отличается более высоким, чем у хлебных злаков, содержанием белка. При близком уровне урожайности количество элементов питания, особенно азота, в урожае зернобобовых также значительно выше.

В среднем на 10 ц зерна и соответствующего количества соломы выносится (в кг):

	N	P_2O_5	K ₂ O
Овес, ячмень	31 65	12 15	25 18
Люпин	68	19	47

Максимум накопления азота и калия у гороха и вики достигает к концу цветения, фосфора — при созревании, а у культур с большим периодом вегетации, например у кормовых бобов и люпина, наибольшее количество всех основных элементов питания содержится ко времени созревания бобов на главном стебле.

Значительную долю (от 1/2 до 2/3) общей потребности в азоте зернобобовые культуры обеспечивают за счет симбиотической азотфиксации. Количество биологического азота, накапливаемого в урожае, пожнивных и корневых остатках бобовых культур, зависит от их вида и азотфиксирующей способности. Наиболее интенсивно связывание атмосферного азота бобовыми происходит в нейтральных

почвах при условии заражения корней активными расами клубеньковых бактерий, достаточном уровне фосфорно-калийного питания и обеспеченности молибденом — микроэлементом, принимающим участие в процессе азотфиксации. При кислой реакции среды и при повышенном содержании в почве минерального азота образование клубеньков на корнях бобовых культур ограничивается и фиксация атмосферного азота снижается. В этом случае зернобобовые культуры формируют урожай в основном за счет азота почвы и количество остающегося в пожнивных и корневых остатках азота атмосферы не покрывает вынос этого элемента из почвенных запасов.

В благоприятных для азотфиксации условиях зернобобовые более полно обеспечивают свои потребности за счет азота воздуха и дают хороший урожай. Оставшиеся в почве богатые азотом корневые и пожнивные остатки постепенно разлагаются и улучшают азотное питание культур, следующих в севообороте за зернобобовыми.

Фосфорные и калийные удобрения в дозе 45—60 кг действующего вещества на 1 га следует вносить с осеии под зяблевую вспашку (калийные удобрения на легких почвах — под культивацию).

Применение до посева небольшой дозы азотных удобрений (20—30 кг N на 1 га) имеет большое значение для обеспечения азотного питания растений в первый период роста, когда клубеньки еще не образовались. Увеличение доз азотных удобрений под зернобобовые, как показывают опыты, оказывает положительное действие на урожайность, особенно на дерново-подзолистых почвах. Однако более высокие дозы азота или навоза (обычно органические удобрения под зернобобовые не вносят) могут вызвать снижение относительных размеров азотфиксации (абсолютное количество усвоенного растениями из атмосферы азота может остаться на прежнем уровне или даже несколько возрасти) и привести к сильному развитию вегетативной массы и затягиванию созревания.

Внесение небольшой дозы гранулированного суперфосфата (0,5 ц на 1 га) в рядки при посеве обеспечивает питание растений фосфором в начальный период роста.

Соя, фасоль, вика хорошо отзываются на внесение навоза. Урожайность фасоли при заделке навоза повышается в среднем на 3 ц и более, а сои — на 2—5 ц на 1 га. Горох лучше всего размещать в севообороте после удобрявшихся навозом озимых или пропашных культур. Все зернобобовые культуры, за исключением люпина, чувствительны к повышенной кислотности почвы, поэтому кислые почвы необходимо известковать. Для получения высокой урожайности зерновых бобовых культур следует применять молибденовые удобрения на почвах с низким содержанием доступных форм этого микроэлемента.

Йз фосфорных удобрений, кроме суперфосфата, на дерновоподзолистых почвах и выщелоченных черноземах можно применять фосфоритную муку. Особенно эффективно внесение ее под люпин и горох, которые усваивают фосфор из труднорастворимых фосфатов. Хорошее калийное удобрение под зернобобовые на более легких почвах — калимагнезнальные соли, а из местных удобрений — зола. Под влиянием фосфорных и калийных удобрений увеличивается фиксация бобовыми азота воздуха, улучшается их рост и значительно повышается урожайность.

Удобрение многолетних трав

В полевых и прифермских (кормовых) севооборотах на дерновоподзолистых и серых лесных почвах, а также в увлажненных районах черноземной зоны распространены посевы клевера красного (одного или совместно с тимофеевкой). Возделывание трав позволяет получать хорошие урожаи высокопитательного белкового корма для животных и способствует повышению плодородия почвы за счет накопления азота в пожнивных и корневых остатках клевера. Многолетние травы являются хорошим предшественником для озимых хлебов и льна.

При выращивании клевера и клевера с тимофеевкой на кислых почвах необходимо известкование. При внесении извести повышается урожайность трав и возрастает доля клевера в травостое.

На кислых почвах клевер выпадает и в травостое начинают преобладать тимофеевка и разнотравье, урожай и качество кормов снижаются, падает накопление азота за счет азотфиксации.

Удобрение трав в севообороте начинается с удобрения покровной культуры. Внесение навоза под покровную озимую культуру на дерново-подзолистых почвах и на черноземах обеспечивает увеличение продуктивности всего звена севооборота — повышается урожайность зерновых, трав и возделываемой по пласту культуры. Под яровые покровные культуры предусматривается внесение до посева повышенных доз фосфорно-калийных удобрений. Заделанные под

Таблица 57 Влияние различного применения фосфорно-калийных удобрений на урожайность клеверного сена

	Прибавка урожайности сена (ц на 1 га)			
Место и условил проведения опыта	РК под покровную культуру	РК поверх- ностно весной		
Семеновский опорный пункт (Горьковская область);	18,2	8,9		
сунесчаные подзолистые почвы Горьковская государственная сельскохозяйственная	11,6	6,4		
опытная станция; серые лесные Уральская опытная станция; тяжелосуглинистые	6,3	3,4		
подзолистые почвы Опорный пункт ВНИИ сахарной свеклы; выщело- ченные черноземы	5,8	3,4		

вспашку фосфорно-калийные удобрения служат хорошим источником элементов питания для клевера после уборки покровной культуры и в последующий период. Если под покровную культуру удобрения не применялись, то их можно вносить в подкормку после уборки покровной культуры или рано весной по травам 1-го года пользования. Однако необходимо отметить, что эффективность фосфора и калия при поверхностном внесении в подкормку ниже, чем при глубокой заделке в почву перед посевом покровной культуры, особенно в условиях недостаточной влагообеспеченности (табл. 57).

Урожайность клевера может быть значительно повышена внесением борных и молибденовых удобрений. На малоплодородных дерново-подзолистых почвах целесообразно провести подкормку травостоя с преобладанием тимофеевки небольшим количеством азотных удобрений в периоды быстрого роста трав. Азотные удобрения в больших дозах благоприятно влияют на рост и развитие тимофеевки и разнотравья, но доля клевера в составе травостоя уменьшается, снижаются и размеры накопления им азота из атмосферы.

Удобрение льна-долгунца

Основные площади возделывания льна-долгунца расположены в зоне дерново-подзолистых почв. Лен не переносит повышенной кислотности. Оптимальная реакция для него — рН 5,5—6,5. Лен хорошо отзывается на умеренное известкование почв с повышенной кислотностью, однако при внесении высоких доз извести, а также на перегнойно-карбонатных и темноцветных заболоченных почвах с нейтральной или щелочной реакцией лен страдает от недостатка бора, поражается бактериозом, в результате чего снижается урожай и ухудшается качество волокна. На таких почвах необходимо внесение борных удобрений в дозе 0,5—1 кг бора на 1 га.

Известкование в льняных севооборотах рекомендуется проводить пониженными дозами — не больше $^{2}/_{3}$ — $^{3}/_{4}$ от полной нормы, определяемой по гидролитической кислотности. Дозы извести устанавливаются с учетом состава других возделываемых в севообороте культур, а также механического состава почвы.

Лен имеет слаборазвитую корневую систему и плохо усваивает труднорастворимые формы питательных веществ из почвы, поэтому весьма требователен к наличию в ней питательных веществ в усвояемой форме и отзывчив на внесение минеральных удобрений.

При урожайности 10 ц волокна с гектара лен потребляет примерно 80 кг N, 40 кг P_2O_5 и 70 кг K_2O .

Для льна характерен четко выраженный максимум потребления питательных веществ, а также критические периоды потребности в отдельных элементах минерального питания в течение вегетации.

В период от всходов до бутонизации лен медленно растет и потребляет относительно небольшую долю необходимого количества питательных веществ (около 30% азота и калия от максимального его содержания в урожае и до 20% фосфора). К недостатку фосфора лен

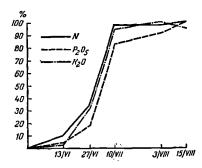


Рис. 15. Динамика поглощения питательных веществ льном (по А. М. Брагину):

13/VI — фаза "епочки"; 27/VI — начало бутонизации; 10/VII — цветение; 3/VIII — молочная спелость; 15/VIII— молочно-восковая спелость.

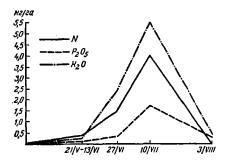


Рис. 16. Поглощение элементов питания льном за один день (по A. M. Брагипу):

21/V-13/VI — от пеходой до фазы "елочка"; 13/VI-27/VI — от фазы "елочка" до бутонизации до цветения; 10/VII — от бутонизации до цветения; 10/VII — от пиетения до молочной спелости.

особенно чувствителен в начальный период роста — от всходов до образования 5—6 пар листочков. Дефицит фосфора в это время отрицательно влияет на развитие льна, снижает урожай соломы и семян, что не может быть исправлено последующим, даже обильным, снабжением фосфором. В первый период вегетации лен чувствителен также к недостатку азота и калия.

Критический период в азотном питании льна — от фазы «елочки» до бутонизации. Однако избыток азота в первую половину вегетации отрицательно влияет на качество волокна и увеличивает склонность льна к полеганию.

Максимальное количество азота, фосфора и калия лен поглощает в период бутонизации и цветения, за короткий промежуток времени— примерно две недели — растения используют 60—65% питательных веществ (рис. 15, 16).

Уровень минерального питания определяет не только урожайность льна, но и качество получаемой продукции. Фосфорные и калийные удобрения повышают урожайность льна и улучшают его качество — увеличивается выход и прочность волокна. Обильное, особенно одностороннее, при недостатке фосфора и калия, питание азотом может вызвать полегание льна, снижение доли луба в соломе и уменьшение выхода волокна. При достаточном обеспечении льна фосфором, калием и азотом повышается урожайность и сохраняется высокое качество продукции.

В основных льноводческих районах лен чаще всего размещают по пласту многолетних трав, реже — по мягкой пахоте или обороту пласта.

Удобрение льна в значительной степени зависит от урожайности трав и состава травостоя, удобрения предшественника. При возделывании льна после клевера или других многолетних трав с высокой

долей бобовых в травостое применяются меньшие дозы азотных удобрений. В то же время возрастает потребность в больших дозах фосфорных и калийных удобрений, особенно если они применялись в ограниченных количествах под покровную культуру или в подкормки трав. Лен, идущий по мягким почвам, удобряется большей дозой азота.

Внесение полуперепревшего навоза непосредственно под лен не рекомендуется, так как он увеличивает засоренность льна, вызывает пестроту стеблестоя, что приводит к снижению качества волокна. Непосредственно под лен, особенно по мягким почвам, целесообразно внесение хорошо разложившегося низинного торфа (30—40 т на 1 га) или перегноя (25—30 т на 1 га). Вносить их лучше с осени под зяблевую вспашку. Птичий помет и навозную жижу рекомендуется вносить весной под предпосевную культивацию. Обычно органические удобрения под лен не применяются.

Для получения высокой урожайности льна важное значение имеет правильное распределение органических и минеральных удобрений в севообороте (табл. 58).

Таблица 58 Система удобрения в льняном севообороте (по Гулякину И. В.)

Культура		При посеве		После посева			
· · · · · · · · · · · · · · · · · · ·	навоз	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	N
Вика с овсом Озимые с подсевом трав Травы 1-го года поль- зования Травы 2-го года поль- зования Лен Картофель Яровые колосовые		30—40 30—40 — — 30—50 80—120 60—80	- - 100—150	30—40 150—200 — — — 100—150 120—150 60—80		10 10 - - 10 20 10	40—60 — — — 30—50 —

Примечание. Дозы навоза указаны в т; N, P_2O_5 и K_2O-B кг на 1 га. При такой об-спеченности удобренилми и высокой агротехнике можно получать с 1 га на среднесуглипистых почвах Нечерноземной зоны 25—30 ц зерновых, 80-100 ц сена трав за два года пользования, 200-250 ц поздвего картофеля и G-10 ц волокна льна.

Фосфорные и калийные удобрения под лен лучше вносить с осени под глубокую зяблевую вспашку или рано весной, сразу после схода снега, с последующей глубокой заделкой. По данным Института льна, высокий эффект дает внесение небольшой дозы гранулированного суперфосфата (0,5 ц на 1 га) в рядки при посеве комбинированными сеялками. Азотные удобрения до посева вносят под предпосевную обработку.

При высоких дозах азотных удобрений лучше $^{1}/_{2}$ их внести до носева, а остальное — в подкормку в фазе «елочки» (подкормка проводится в зависимости от состава травостоя и организационно-

хозяйственных условий), применение до посева льна полной нормы азота — свыше 30—50 кг N по пласту трав и 45—70 кг N по мягкой пахоте — может вызвать полегание. Перенесение части азота при средних дозах из основного удобрения в подкормку может быть менее эффективно при недостатке влаги в почве и малом количестве осадков в период проведения подкормки.

Под лен можно вносить все формы азотных удобрений, а также местные удобрения, содержащие азот,— навозную жижу и птичий помет.

Из фосфорных удобрений на всех почвах наиболее эффективен гранулированный суперфосфат. На кислых почвах хорошие результаты дает фосфоритная мука; ее лучше применять в смеси с суперфосфатом в количестве 25—75% общей дозы, в зависимости от кислотности почвы.

Лучшие формы калийных удобрений для льна — сернокислый калий и калимагнезия, а из местных — зола. При однократном внесении хлористый калий равноценен сернокислому калию, а сильвинит и калийные соли, содержащие большое количество хлора, значительно уступают им по эффективности.

Удобрение картофеля

Картофель — важнейшая продовольственная кормовая и техническая культура. Основные площади посевов картофеля сосредоточены в центральных и северо-западных областях европейской части СССР — в Нечерноземной и лесостепной зонах, наиболее благоприятных для его возделывания.

Оптимальная реакция среды для картофеля — pH 5,5—6,0, при этом он лучше других полевых культур переносит кислую реакцию. Картофель хорошо отзывается на известкование сильно- и среднекислых почв умерсными дозами извести. При известковании почвы полной пормой — по гидролитической кислотности — картофель может сильно поражаться паршой, что снижает его товарные и продовольственные качества. В севооборотах Нечерноземной зоны наряду с картофелем (и льном) выращиваются культуры, требовательные к нейтральной реакции среды. Без известкования кислых почв невозможно получение устойчивой высокой урожайности пшеницы, ячменя, кукурузы, корнеплодов, при паличии даже 2-3 полей картофеля лучшая суммарная продуктивность севооборота достигается при известковании по 2/3-3/4 от полной нормы.

Картофель потребляет больше питательных веществ, чем зерновые культуры и лен, но меньше, чем сахарная свекла.

При высокой агротехнике в 100 ц клубней картофеля и соответствующем количестве ботвы содержится 40—60 кг N; 15—20 кг P_2O_5 и 70—90 кг K_2O_5 .

Картофель имеет относительно слаборазвитую кориевую систему, поэтому в первый период роста плохо усваивает труднораство-

римые формы питательных веществ из почвы. Все это обусловливает повышенную отзывчивость его на внесение удобрений.

Поглощение элементов минерального питания картофелем происходит в течение всего вегетационного периода (табл. 59).

Таблица 59 Потребление питательных веществ разными сортами картофеля (по Кулаковской Т. Н., 1970)

		N		P ₂ O ₃		K ₂ O	
Сорт, урожайность	Фаза развития	c 1 ra	%	кг c 1 га	%	кг c i ra	%
Зазерский Среднеспелый, 230 ц с 1 га	Всходы Начало бутониза- цип	4,6	4,5 29	1,2 6,7	19	8,3 53	4,6 29
Скороспелка 1, Ранний, 180 и с	Цветение Уборка Всходы Начало бутониза-	60 101 3,7 28	59 100 3,9 30	13 36 0,9 5,9	37 100 3,1 21	83 181 6,9	46 100 3,9 27
Ранний, 180 ц с 1 га	ции Цветение Уборка	84 96	88 100	19 29	66 100	149 177	84 100

Наибольшее количество питательных веществ поглощается картофелем во время бутонизации и цветения — в период интенсивного роста ботвы и начала клубнеобразования.

Достаточное снабжение растений всеми основными элементами питания в этот период имеет исключительное значение для формирования урожая. Избыточное, особенно одностороннее питание азотом, вызывает сильный рост ботвы и задерживает клубнеобразование.

На образование клубней используются питательные вещества из почвы и удобрений, а также расходуются ранее накопленные в ботве элементы питания. К моменту уборки в клубнях содержится около 80% азота, 90% фосфора (от общего их количества в урожае) и практически весь калий.

Эффективность удобрений зависит от почвенно-климатических условий, уровня агротехники и сорта картофеля. Ранние сорта, которые характеризуются более интенсивным потреблением питательных веществ в единицу времени, сильнее реагируют на удобрение.

Наиболее высокие прибавки урожайности картофеля от удобрений получаются на дерново-подзолистых почвах западных, северозападных и центральных районов РСФСР. Первое место по эффективности на дерново-подзолистых почвах, оподзоленных и выщелоченных черноземах занимают азотные удобрения. Фосфор на этих почвах передко действует сильнее, чем калий.

На обыкновенных и мощных черноземах часто на первом месте по эффективности стоит фосфор, на втором — азот. Несмотря на

большое потребление картофелем калия, эффективность калийных удобрений на большинстве почв слабее, чем азотных, а часто и фосфорных удобрений. Потребность в калии увеличивается при внесении высоких доз азота и фосфора. На пойменных и торфяных почвах калийные удобрения по эффективности занимают первое место, а на песчаных и супесчаных дерново-подзолистых почвах — второе после азотных. На этих почвах необходимо вносить более высокие дозы калийных удобрений даже при внесении навоза.

Картофель хорошо реагирует на внесение навоза на всех почвах, но наиболее высокие прибавки урожайности получают на дерновоподзолистых почвах, особенно на песчаных и супесчаных. На мощных черноземах южных и юго-восточных районов страны эффективность навоза ниже.

Средняя доза навоза под картофель на дерново-подзолистых почвах 20—30 т на 1 га, на черноземах 15—20 т на 1 га. Кроме навоза, под картофель можно вносить торфо-навозные, торфо-жижевые, торфо-фекальные и другие компосты.

Наиболее высокие прибавки урожайности картофеля получают при совместном внесении навоза или компостов с минеральными удобрениями.

Под картофель целесообразно вносить с навозом прежде всего азотные или азотно-фосфорные удобрения.

Эффективность отдельных видов минеральных удобрений на фоне навоза зависит от плодородия почвы, а также от дозы навоза и стецени его разложения.

Внесение навоза и полного минерального удобрения имеет особенно большое значение для повышения урожайности картофеля на дерново-подзолистых почвах при посадке его после слабоудобрявшихся зерновых и пропашных культур.

При использовании высоких доз навоза (30—40 т и более на 1 га) на хорошо окультуренных почвах можно ограничиться внесением только азотных или азотных и фосфорных удобрений. Если навоз под картофель не вносят, то необходимо применение полного минерального удобрения в повышенных количествах.

Дозы минеральных удобрений на фоне навоза должны быть выше под ранние сорта картофеля. При этом важная роль принадлежит правильному соотношению между отдельными видами удобрений. Для получения ранней товарной продукции необходим более высокий уровень фосфорного питания растений.

Средние дозы минеральных удобрений на фоне органических удобрений под картофель в севооборотах дерново-подзолистой зоны приведены в таблице 58.

Навоз, фосфорные и калийные удобрения лучше вносить с осени под зяблевую вспашку. Весенпее внесение удобрений дает лучшие результаты только иа песчаных и супесчаных дерново-подзолистых почвах.

Азотные удобрения целесообразно вносить весной под перепашку зяби или предпосевную культивацию.

Для обеспечения более благоприятных условий питания в начальный период роста большое значение имеет местное внесение удобрений в лунки при посадке картофеля. При посадке в гнезда вносят гранулированный суперфосфат в дозе 20-30 кг P_2O_5 на 1 га и аммиачную селитру — 15-20 кг N на 1 га.

На песчаных и супесчаных почвах часть азотных удобрений $(^{1}/_{4}-^{1}/_{3})$ общей дозы) целесообразно внести в подкормку. На других почвах перенесение части удобрений из основного в подкормку, как показывают опыты, снижает их эффективность. Поэтому вносить удобрения в подкормку следует лишь в том случае, если они не вносились до посева или применялись в незначительном количестве. Для подкормки картофеля можно использовать также местные удобрения— навозную жижу $(5-10\ \text{т}$ на $1\ \text{гa})$, птичий помет $(5-8\ \text{ц}$ на $1\ \text{гa})$, которые вносят с немедленной заделкой в почву при рыхлении междурядий.

Под картофель можно применять все формы промышленных азотных удобрений. На кислых почвах наряду с суперфосфатом в основное удобрение может вноситься фосфоритная мука (в полуторных или удвоенных дозах по сравнению с суперфосфатом), а также другие фосфорные удобрения. По своему действию как при разовом, так и длительном применении в севообороте сульфатные и хлористые формы калийных удобрений практически равноценны. Однако хлористые формы калия могут снижать относительное содержание крахмала в клубнях картофеля. Глубокая заделка хлорсодержащих калийных удобрений с осени в значительной степени обеспечивает устранение вредного действия хлора (вследствие вымывания его из почвы с осадками).

Относительное содержание крахмала в клубнях может повышаться под действием фосфорных удобрений, а под влиянием азотных — несколько снижаться. Однако вследствие увеличения урожайности картофеля валовой сбор крахмала при использовании удобрений всегда возрастает.

Удобрение сахарной свеклы

Сахарная свекла возделывается в различных почвенно-климатических зонах СССР, но основные площади посевов фабричной сахарной свеклы располагаются в центральных черноземных районах РСФСР и лесостепной зоне Украины.

Сахарная свекла имеет довольно мощную корневую систему, которая может проникать в глубь почвы до 2 м и распространяться в стороны до 1 м.

Оптимальная реакция почвы для сахарной свеклы близка к нейтральной или слабощелочная (рН 6,5—7,5). Поэтому кислые серые лесные и дерново-подзолистые почвы необходимо известковать. Поскольку при известковании спижается подвижность и доступность растениями бора почвы, при выращивании сахарной свеклы на известкованных почвах с низким содержанием доступных форм этого

микроэлемента целесообразно применение борных удобрений. Недостаток бора может вызывать у сахарной свеклы, как и других корнеплодов, заболевание — гниль сердечка.

По выносу питательных веществ свекла занимает одно из первых мест среди полевых культур. При урожайности 400 ц свекла потребляет с 1 га 180 кг N, 65 кг P_2O_5 и 250 кг K $_2O$.

Как уже отмечалось в главе I «Основы питания растений», вынос элементов питания сахарной свеклой на 100 ц корней и соответствующее количество ботвы может изменяться в широких пределах в зависимости от почвенно-климатических условий и уровня урожайности. Большее потребление питательных веществ сахарной свеклой в Нечерноземной зоне, чем в районах черноземных почв, прежде всего объясняется увеличением количества ботвы на 100 ц корней.

Потребление питательных веществ сахарной свеклой происходит на протяжении всего периода вегетации, почти до уборки. В начальный период роста она поглощает относительно небольшое количество азота, фосфора и калия, но так как корневая система в это время еще слабо развита, то молодые растения очень чувствительны к недостатку усвояемых питательных веществ в почве, особенно фосфора. В дальнейшем потребление питательных веществ резко усиливается и достигает максимума в июле — августе. В период интенсивного роста листьев сахарная свекла особенно много потребляет азота. В период роста корня и сахаронакопления требуется умеренное азотное питание, но повышенное фосфатное и особенно калийное.

По данным Рамонской опытной станции, при урожайности около 300 ц корней свеклы с 1 га поступление в растения элементов минерального питания было следующим (табл. 60).

Таблица 60 Потребление питательных веществ сахарной свеклы (% от максимального)

		Время определения						
Элемент питания		1	23	15 авгу-	1	20		
	10 июня	июля ста		сентябрл		5 ок тяб ря		
Азот Фосфор Калий	20 13 16	54 35 46	72 50 53	91 66 72	98 74 73	100 98 93	91 100 100	

В Нечерноземной зоне при более коротком вегетационном периоде потребление элементов питания происходит в сжатые сроки, а основное количество питательных веществ потребляется в течение августа — сентября месяцев.

Для обеспечения питания сахарной свеклы в течение всего периода вегетации необходимо применение органических и минеральных удобрений и сочетание различных способов их внесения: до посева, в рядки при посеве и в подкормку. Сахарная свекла — одна из наиболее отзывчивых на навоз и минеральные удобрения сельско-

хозяйственных культур. При орошении эффективность удобрений резко повышается.

Особенно велико значение навоза и минеральных удобрений для получения высокого урожая сахарной свеклы на бедных дерновоподзолистых почвах.

Эффективность отдельных видов удобрений зависит от предшественника. При посеве свеклы после бобовых культур снижается действие азотных удобрений и повышается действие навоза, фосфорных и калийных удобрений, а после зерновых заметно повышается эффективность азотных удобрений.

Большие урожаи сахарной свеклы получают при совместном внесении навоза и минеральных удобрений. Средняя доза навоза на черноземах и достаточно окультуренных дерново-подзолистых почвах — 15—20 т на 1 га; на слабоокультуренных бедных подзолистых почвах необходимо вносить 30 т и более навоза на 1 га.

При выращивании свеклы на достаточно окультуренных почвах после хорошо удобренных навозом предшественников (кукуруза, картофель, озимая пшеница и др.) под нее можно вносить только минеральные удобрения. Непосредственное внесение навоза под свеклу совместно с минеральными удобрениями дает более высокие прибавки урожайности, особенно на легких супесчаных почвах, а также па тяжелых почвах, склонных к заплыванию. При внесении навоза действие азотных удобрений обычно возрастает, а эффективность фосфорных и калийных удобрений уменьшается.

Навоз и большую часть минеральных удобрений (до 70%) вносят под сахарную свеклу в виде основного удобрения с осени под глубокую зяблевую вспашку плугом с предплужником. Особенно большое значение имеет глубокая заделка для фосфорных и калийных удобрений. При внесении минеральных удобрений весной с мелкой заделкой под культиватор или борону эффективность их резко снижается, особенно в засушливые годы (табл. 61, 62).

Только на легких почвах в более увлажненных районах западных областей Украины и Нечерноземной зоне калийные удобрения

Таблица 61
Влияние времени впесения и способов заделки азотных, фосфорных и калийных удобрений на урожай сахарной свеклы

	Прибавка урожайности корней (ц на 1 га) при внесении удобрений				
Опытная станция	осенью под плуг	весной под культиватор			
Харьковская (за 9 лет) Ивановская (за 3 года) Льговская (за 3 года)	65 47 57	27 18 38			

Влияпие способа внесения удобрений на эффективность минеральных удобрений в годы с различным увлажнением (данные Харьковской опытной станции за 8 лет)

	Прибавка урожайности корней (ц на 1 га)				
Время и способ внесения	в годы с пормальным количеством осад- ков	в годы резко засуш- ливые в вссенне-лет- ний период			
Осенью под плуг с предплужником Весной под культиватор Урожай без удобрений	78 51 284	55 5 138			

лучше вносить весной под предпосевную обработку вместе с азотными удобрениями.

В рядки при посеве на всех почвах (кроме солонцеватых) рекомендуется вносить полное минеральное удобрение: 10-15 кг N, 15-20 кг P_2O_5 и 10-15 кг K_2O на 1 га. Рядковое удобрение, улучшая условия питания и рост растений в начальный период, обеспечивает значительное повышение урожая сахарной свеклы. Внесение удобрения в рядки — обязательный прием при возделывании сахарной свеклы. В рядки нельзя применять аммиачные формы азотных удобрений, поскольку в семенах сахарной свеклы имеется малый запас углеводов и проростки могут страдать от аммиачного отравления.

Для лучшего обеспечения растений питательными веществами в течение всей вегстации и получения высокой урожайности сахарной свеклы (500 д с 1 га и более), кроме основного и рядкового удобрения, необходимы подкормки в период вегетации. Однако подкормка не может заменить основного удобрения. Опыты показывают, что перенос части удобрений из основного в подкормку при обычных дозах приводит к снижению урожайности. Подкормка должна применяться в дополнение к основному удобрению.

Для подкормки можно использовать как промышленные, так и местные удобрения — птичий помет (3—5 ц на 1 га), навозную жижу (2—3 т на 1 га). Наиболее высокий эффект дает подкормка полным минеральным удобрением в ранние сроки. В неорошаемых районах обычно достаточно одной подкормки вслед за прорывкой свеклы. Средние дозы удобрений в подкормку: 15-20 кг N, 15-30 кг P_2O_6 и 15-20 кг K_2O на 1 га. При орошении могут быть даны две и более подкормок. Вторую подкормку проводят через 15-20 дней после первой. При подкормках в более поздние сроки вносят только фосфорные и калийные удобрения. Удобрения в подкормку вносят культиваторами-растениепитателями с заделкой на глубину 10-15 см.

Зона возделывания фабричной сахарной свеклы включает и основные районы выращивания озимой пшеницы, кукурузы на зерно

Система удобрения в зерно-свекловичном севообороте (по Гулякину И. В.)

		Доп		_	После посева	
Культура	навоз	N P ₂ O ₅		K ₂ O		
Вика или горох с опсом на сено Озимые Свекла Яровые зерновые Клевер Озимые Свекла Кукуруза (на зерно) Яровые зерновые	20—30 = = 15—25 =	30—40 — 120—200 40—60 — 100—150 80—100 60—80	40—60 60—80 120—200 60—90 — 40—60 90—150 80—100 60—80	40—80 40—60 100—150 60—90 — 60—80 90—150 80—100 60—80	10 10 10 10 10 5 10	40—80 — — — 40—60 —

Примечание. Дозы навоза указаны в т; N, P_2O_8 , K_2O — в кг на 1 га. При высокой агротехнике и обеспеченности удобрениями на черноземах можно получить урожайность зерновых 25-30 ц и сахарной свеклы 250-350 ц с 1 га. В случае худшей обеспеченности минеральными удобрениями до посева их вносят в меньших дозах или под отдельные зерновые яровые культуры дают только в рядки.

и подсолнечника. В зерно-свекловичных севооборотах минеральными удобрениями обеспечивается в первую очередь сахарная свекла, но при этом решается одновременно и задача получения высокой устойчивой урожайности озимой пшеницы и кукурузы (табл. 63).

Д 60 М. Удобрение хлопчатника

Основными районами возделывания хлопчатника являются республики Средней Азии, при этом более половины валового сбора хлопка приходится на Узбекскую ССР, Посевы хлопчатника размещены также в Казахстане, Армении и Азербайджане. Большая часть посевов хлопчатника при орошении расположена на сероземах, а также луговых и лугово-болотных почвах. Систематическое применение больших доз минеральных удобрений под хлопчатник (в среднем около 350 кг действующего вещества на 1 га) обеспечивает получение высоких, устойчивых урожаев. По интенсивности удобрения и сбору хлопка-сырца с единицы площади наша страна занимает первое место в мире.

В среднем на 1 т хлопка-сырца и соответствующее количество вегетативной массы растения потребляют 50 кг N, 15 кг P_2O_5 и 50 кг K_2O . Вынос элементов питания хлопчатником зависит от уровня урожая и его структуры. При высокой урожайности (45—50 ц с 1 га и выше) соотношение между вегетативными и репродуктивными органами более благоприятное и потребление питательных веществ на тонну хлопка-сырца меньше, чем при относительно низких урожаях.

Потребление элементов минерального питания растениями связано с ходом накопления сухого вещества и происходит неравномерно.

От появления всходов до бутонизации хлопчатник растет очень медленно — за этот период формируется всего 4—5% органического вещества от максимального его накопления растениями. За время от бутонизации до цветения наблюдается наиболее интенсивный прирост сухой массы — образуется 25—30% органического вещества. Высокие темпы роста вегетативной массы сохраняются до начала созревания, а в последующем увеличение сухой массы происходит вследствие развития репродуктивных органов.

Наибольшее количество питательных веществ поглощается хлопчатником в период от начала цветения до массового созревания (табл. 64).

Таблица 64 Потребление питательных веществ хлопчатником в течение вегетации (% от общего выноса)

Период	N	P2O2	K ₂ O
От появления всходов до бутонизации, с 17/IV по 13/VI От бутонизации до плодообразования, с 13/VI по 16/VIII От плодообразования до конца вегетации, с 16/VIII по 11/X	6 0	8 56 36	10 64 26

Как и другие растения, хлопчатник чувствителен к недостатку фосфора и азота в первый период роста, хотя потребление этих элементов питания за время от всходов до бутонизации составляет 8—10% от общего их выноса с урожаем. Припосевное внесение небольших доз азота (5—10 кг на 1 га) и фосфора (10—20 кг на 1 га) повышает урожай хлопка-сырца на 2—3 ц на 1 га.

Наибольшую роль в повышении урожая хлопчатника играют азотные и фосфорные удобрения, мепьшее значение на богатых калием сероземах принадлежит калийным удобрениям. Эффективность калийных удобрений повышается с ростом урожая хлопчатника на фоне высоких доз азота и фосфора, а также в севооборотах с люцерной.

Для получения урожайности хлопка-сырца 35—70 ц с 1 га рекомендуются следующие примерные нормы удобрений (табл. 65). В районах орошаемого хлопководства на почвах с высокой нитрифицирующей способностью происходит интенсивная миграция азота. Во время поливов нитраты опускаются с водой в нижележащие горизонты почвы, а при подсыхании почвы в межполивные периоды поднимаются в верхние пересыхающие слои, что ограничивает использование азота растениями. В этих условиях происходят значительные потери азота удобрений и почвы за счет вымы-

Примерные дозы удобрений под хлопчатник па различных почвах (в кг питательных веществ на 1 га)

мароП	N	P ₂ O ₅	K ₂ O
Темные сероземы	140—165	110—120	40—45
Темно-луговые	120—145	120—130	60—30
Типичные сероземы	150—175	110—120	40—45
Светлые сероземы	160—185	110—120	40—45

вания нитратов и в газообразной форме вследствие процесса денитрификации. Для снижения потерь и повышения эффективности азота удобрений важное значение имеют правильные сроки и способы внесения удобрений, соблюдение поливного режима, а также использование приемов, ограничивающих нитрификацию азота аммиачных удобрений и мочевины, в том числе с помощью ингибиторов нитрификации.

Под хлопчатник всю дозу азотных удобрений (при норме до 100 кг N на 1 га) или большую ее часть (при более высоких нормах) вносят в подкормки при междурядных обработках в сочетании с поливами. До посева обычно вносится не более 1/3 общей дозы азота. Подкормка азотом проводится до фазы цветения, более позднее применение азота снижает доморозный сбор хлопка-сырца. Число подкормок и разовые дозы удобрений устанавливаются исходя из общей их нормы с учетом количества азота, внесенного до посева, и состояния растений.

Основное количество фосфорных удобрений (3/4 общей нормы) под хлопчатник должно заделываться под вспашку. Глубина заделки имеет большое значение для эффективности фосфорных удобрений. В сероземах и луговых почвах фосфор интенсивно химически связывается с образованием труднорастворимых фосфатов кальция и малоподвижен. Корневая система хлопчатника уже в первые две недели после всходов проникает на глубину 40—50 см, а в период наибольшего потребления фосфора, от цветения до плодообразования, боковые корни в верхнем пересыхающем 10-сантиметровом слое отмирают и основная масса деятельных корней размещается в глубоких слоях почвы. Действие фосфорных удобрений на урожайность хлопчатника может быть значительно повышено при локальном внесении лентами на дно борозды.

Калийные удобрения при ограниченных дозах применяют в подкормки вместе с азотными и фосфорными удобрениями в период 5—6 листьев, бутонизации и начале цветения, а при больших дозах половина калия вносится под вспашку. При внессении удобрений в подкормку следует обеспечивать возможно более глубокую их заделку во время междурядной обработки.

Система удобрения в хлопково-люцерновом севообороте (по Гулякину И. В.)

	ļ	До	посева		При	посеве	После посева			
Культура	навоз	N	P ₂ O ₅	К₂О	N	P2O5	N	P2O5	K20	
Люцерна	_		100—120	50—90	_					
»	l —	! — !	_] J	_	_	l —		l —	
»	—	_	_			 -	[-	í	í —	
Хлопчатник	—	l —	70—80	30—40	5	10	40-50	20-30	20-30	
»	l —	—	70—80	30-40	5	10	60—70	20-30	20 - 30	
»	l —	30-50	60-70	30—40	5	10	70—100	15-20	20 - 30	
»	10	30-50	50 - 60	1 1	5	10	60-90	15-20	3040	
D	_	40-60	60 - 70		5	10	80—120	20-30	30 - 40	
»	10	30-50	70—80		5	10	70—100	-	20 - 30	
»	10	40 - 60	70—80	_	5	10	80—100	J	20 - 30	
	l	[

В хлопково-люцерновых севооборотах (2—3 года люцерна и 5—7 полей хлопчатника) в первые годы после распашки травяного пласта под хлопчатник вносят повышенные нормы фосфорных удобрений, а также калия. Так как люцерна способна накапливать в почве значительное количество азота, дозы его снижаются при выращивании хлопчатника по пласту и обороту пласта. По мере удаления хлопчатника от люцерны в севообороте дозы азотных удобрений возрастают, а фосфора и калия несколько уменьшаются. Навоз (накопление его в хлопкосеющих районах ограничено) применяется в дозе 10—15 т на 1 га обычно на четвертый-пятый год после распашки пласта люцерны. Примерная схема размещения удобрений в хлопково-люцерновом севообороте на сероземной почве приведена в таблице 66.

Удобрение лугов и пастбищ

Наша страна располагает огромными площадями естественных лугово-пастбищных угодий. В решении задачи дальнейшего увеличения производства продуктов животноводства и снижении их себестоимости первостепенное значение имеет создание устойчивой кормовой базы. В связи с этим постоянно расширяется объем работ по улучшению природных кормовых угодий. Мелиорация природных кормовых угодий, их коренное и поверхностное улучшение, создание высокопродуктивных пастбищ и сенокосов дают возможность резко повысить урожайность лугово-пастбищных трав.

Исключительная роль в системе мероприятий по повышению продуктивности лугов и пастбищ, создании устойчивой кормовой базы для интенсивно развивающегося животноводства принадлежит систематическому применению удобрений. Благодаря минеральным удобрениям продуктивность сенокосов и пастбищ может быть увеличена до 1,5—2 тыс., а в увлажненных районах и при орошении —

до 8—10 тыс. кормовых единиц с гектара. При этом резко возрастает сбор растительного белка и снижается себестоимость кормов.

Система удобрения лугов и пастбищ разрабатывается с учетом ряда факторов, среди которых определяющими являются состав травостоя (соотношение бобовых и злаковых трав), особенности питания отдельных видов трав, условия влагообеспеченности и уровень плодородия почвы, характер использования кормовых угодий.

Одним из важнейших приемов повышения продуктивности природных кормовых угодий, а также создаваемых сеяных сенокосов пластбищ в Нечерноземной зоне является известкование.

Известкование кислых почв лугов и пастбищ повышает эффективность минеральных удобрений, создает благоприятные условия для развития в травостое бобовых трав. Средняя прибавка урожайности при поверхностном внесении извести па сенокосах составляет 5—9 ц сена на 1 га, а при коренном улучшении лугов — 10—17 ц. Особенно эффективно известкование при создании лугов на осущенных кислых всрховых и переходных торфяниках — прибавка урожайности сена достигает в этом случае 20—25 ц на 1 га.

Содержание элементов питания в урожае сена или пастбищном корме подвержено сильным колебаниям в зависимости от ботанического состава травостоя, величины урожая, фазы развития в период сенокошения (или стравливания), числа укосов или стравливаний и других условий (табл. 67).

Таблица 67 Содержание азота, фосфора и калия в сене трав (в 10 ц сухого вещества сена, в кг)

Растения	N	P ₂ O ₆	K ₂ O	Растепия	N	P ₂ O ₅	K ₂ O
Райграс пастбищ- ный Ежа сборная Мятлик луговой Овсяница красная Овсяница луговая	15 20 18 18	6 7 6 6	25 36 25 28 25	Тпмофеевка Кленер красный » белый » розовый	13 27 33 30	4 6 8 7	25 38 57 46

Бобовые травы отличаются значительно большим накоплением в урожае азота и калия. Темпы накопления сухого вещества и потребления элементов питания различными травами одного вида также существенно отличаются. Для большинства злаковых луговонастбищных трав характерно интенсивное потребление элементов питания с начала отрастания, что и обусловливает их высокую отзывчивость на применение удобрений, особенно азотных. Наиболее высокая урожайность луговых злаковых трав достигается на слабокислых почвах. Бобовые растепия лучше произрастают на почвах с нейтральной и слабощелочной реакцией и не переносят кислот-

ности. При нейтрализации кислых почв увеличение доли бобовых в травостое происходит прежде всего за счет вытеснения разнотравья, более приспособленного к кислой реакции.

Система удобрения на пастбищах с бобово-злаковым травостоем должна быть направлена на создание наиболее благоприятных условий для развития как бобовых, так и злаковых растений. При этом особое внимание должно уделяться обеспечению высокого уровня использования способности бобовых фиксировать азот атмосферы в симбиозе с клубеньковыми бактериями. Первоочередное значение на лугах и пастбищах с бобово-злаковым травостоем при относительно высокой доле бобовых трав имеет известкование кислых почв и применение фосфорно-калийных удобрений. Устранение избыточной кислотности почвы и улучшение фосфорно-калийного питания усиливает рост бобовых трав, приводит к увеличению их доли в травостое, повышает урожайность и улучшает его качество вследствие накопления бобовыми большего количества азота из атмосферы и возрастания содержания протеина (табл. 68).

Таблица в Влияние фосфорно-калийных удобрений на урожайность и содержание сырого протеина в корме на бобово-злаковом пастбище (Кутузова А. А.)

	Урожайность (: вещес	ц абсолютно сухого гва с 1 га)	Содержание сы-	Вынос азота		
Удобрение	псего	в том числе бо- бовых	рого протеина (%)	(Kr c 1 ra)		
Контроль 50Р 50К 50Р50К 50Р100К	40,6 45,1 49,6 50,7 54,2	27,5 30,2 36,1 36,5 37,5	18,7 18,0 20,7 20,5 19,5	121 130 164 166 170		

Систематическое применение повышенных доз азота на бобовозлаковых травостоях приводит к выпадению бобовых и постепенному превращению смешанного травостоя в злаковый; соответственно снижается доля участия биологического азота в формировании урожая. В то же время применение умеренных доз минерального азота на фоне фосфорно-калийных удобрений, особенно на бедных азотом дерново-подзолистых почвах, обеспечивает значительное повышение продуктивности бобово-злаковых лугов и пастбиш при сохранении высокой доли бобовых в травостое. В условиях хорошей влагообеспеченности трав и при орошении угнетающее действие умеренных доз азотных удобрений на развитие бобовых и их азотфиксирующую способность проявляется не столь резко. На высокопродуктивных орошаемых бобово-злаковых пастбищах для сохранения достаточно высокого использования биологического азота на формирование урожая трав доза азотных удобрений должна находиться в пределах 50—90 кг N на 1 га при ежегодной норме фосфорно-калийных удобрений 90—120 кг действующего вещества. Вопрос о целесообразности применения и величине доз минеральных азотных удобрений на бобово-злаковых травостоях должен решаться дифференцированно с учетом общей обеспеченности хозяйства удобрениями, плодородия почвы, уровня планируемой урожайности трав и способа использования кормовых угодий (сенокосное или настбищное), и других факторов. Следует предусматривать при этом наиболее эффективное сочетание в пространстве и во времени использование травами биологического и минерального источников азота.

Необходимо отметить, что, несмотря на важное значение бобовых в производстве кормового белка и балансе азота в земледелии, интенсивное ведение луго-пастбищного хозяйства в большинстве развитых стран предопределяет постепенный отказ от биологического азота как основного фактора азотного питания.

В системе удобрения лугов и пастбищ с преимущественно злаковым травостоем решающее значение имеет применение азотных удобрений в сочетании с фосфорно-калийными туками. При пастбищном использовании трав проводится многократное отчуждение надземной части растений на ранних фазах развития, что обусловливает более высокую их потребность в элементах минерального пптания, и особенно азота, чем при сенокосном использовании.

Стравливание травостоя обычно производится в фазе кущения и начала выхода в трубку у основных видовых компонентов, т. е. в период с наиболее высоким относительным содержанием азота и зольных элементов.

Азоту принадлежит особая роль в ростовых процессах и формировании вегетативной массы трав, накоплении сухого вещества. Недостаток азота задерживает деление клеток в точках роста и зародышевых тканях, сокращает число пазушных и придаточных почек, приводит к понижению энергии кущения и отрастания трав. Падение урожая трав при недостатке азота сопровождается снижением качества корма. При пастбищном использовании травостоя растения постоянно находятся в вегетирующем состоянии и сохраняется высокая потребность в азоте на протяжении всего летнего периода.

В большинстве почвенно-климатических зоп пашей страны основным фактором, ограничивающим рост урожайности луговопастбищных трав, является недостаток азота. Даже на плодородных почвах с высокой скоростью минерализации органического вещества травы при пастбищном использовании испытывают недостаток азота, чаще проявляющийся в начальные периоды роста. Урожайность и кормовая ценность высокопродуктивных многолетних культурных пастбищ с преимущественно злаковым травостоем паходится в прямой зависимости от обеспеченности азотом. Запасы почвенного азота не позволяют получать с гектара больше 25—30 ц сухого вещества, а количество вводимого в круговорот азота не превыщает

90 кг с 1 га. На высокопродуктивных же пастбищах вынос азота травами составляет 150—400 кг и более на гектар. Поэтому применение азотных удобрений является одним из основных факторов, обеспечивающих получение высокой урожайности пастбищных трав хорошего качества, особенно на почвах с низким содержанием органического вещества.

Результаты многочисленных и долголетних полевых опытов различных научно-исследовательских институтов, опытных станций, а также практика передовых хозяйств свидетельствуют о высокой эффективности систематического применения азотных удобрений в сочетании с фосфором и калием на луго-пастбищных угодьях в различных почвенно-климатических условиях нашей страны. По имеющимся данным ведущих учреждений в области кормопроизводства (Всесоюзного института кормов им. В. Р. Вильямса, кафедры луговодства ТСХА и других) для создания каждой тысячи кормовых единиц зеленого корма необходимо внести 40-50 кг азота на 1 га. Килограмм же действующего вещества азота обеспечивает, таким образом, получение до 20 корм. единиц при средней себестоимости одной кормовой единицы от 0,8 до 1,2 копейки. Применение азотных удобрений продлевает выпас скота на пастбищах на $1\!-\!1,5$ месяпа благодаря более раннему отрастанию трав весной и более длительному вегетированию осенью, обеспечивает более равномерный выход пастбищного корма.

Наибольшие прибавки урожайности лугово-пастбищных трав и самая высокая оплата продукцией единицы внесенных удобрений достигается в благоприятных условиях увлажнения и при орошении.

Диапазоны между дозами, обеспечивающими максимальную продуктивность кормовых угодий и наибольшую оплату единицы внесенного азота урожаем трав, могут быть весьма существенными. Имеются значительные различия в размерах оптимальных (наиболее агрономически и экономически оправданных) доз азотных удобрений на пастбишах в зависимости от почвенно-климатических условий. В пентральных районах лесной зоны, по данным Института кормов, они равны 180-240 кг на 1 га. Внесение указанных доз азота в 3-4 раза увеличивает урожайность пастбищ, в травостое которых преобладают верховые злаки, особенно ежа сборная. Повышение доз азота до 300 кг на 1 га эффективно на молодых травостоях в годы с равномерным и достаточным количеством осадков. В Прибалтийских республиках с более влажным и мягким климатом оптимальные дозы удобрений выше 240-300 кг на 1 га, а в лесостепной зоне в сухие годы оптимальная доза азота — 120 кг и лишь в голы достаточного увлажнения — до 240 кг азота на 1 га.

В Нечерноземной зоне на пастбищах без регулирования водного режима оптимальные дозы азота на разных типах травостоя с преобладанием верховых злаков равны $180-240~\rm kr$, а с преобладанием низинных злаков — $120-180~\rm kr$ на 1 га. В засушливые годы эффективность применения азотных удобрений снижается в среднем на $35-40\,\%$.

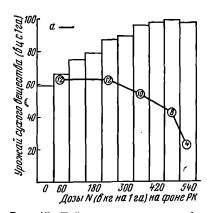


Рис. 17. Действие азотных удобрений на орошаемом культурном пастбище (по Н. Г. Андрееву): а—прибавка урожая сухого вещества (в кг) на 1 кг внесенного азота.

Орошение культурных сенокосов и пастбищ является высокоэффективным приемом повышения их продуктивности не только в районах с засушливым климатом (по данным Института кормов в условиях лесостепи продуктивность культурных пастбищ от орошения возрастает в среднем в 1,5—2 раза, а в зоне сухих степей — в 5—7 раз), но и в районах Нечерноземной зоны с большим количеством осадков. Орошение устраняет сезонные колебания в поступлении кормов, особенно в засушливые периоды, когда даже на интенсивно удобряемых угодьях наблюснижение продуктивности трав. Применение азотных удобрений в сочетании с орошением значитель-

но ослабляет депрессию роста трав, обеспечивает лучшее сохранение в травостое бобовых компонентов, особенно клевера белого. Орошение повышает эффективность азотных удобрений и расширяет возможности их применения. На орошаемых культурных пастбищах оптимальные дозы азотных удобрений могут быть значительно выше, чем без орошения, и достигать 240—320 кг азота на 1 га. Общая за сезон урожайность сухой массы трав продолжает расти при дальнейшем увеличении доз до 400—500 кг на 1 га. Однако наиболее экономически выгодными можно считать дозы до 240 кг на 1 га, при последующем увеличении суммарной дозы азотных удобрений окупаемость единицы действующего вещества резко снижается (рис. 17).

Систематическое внесение повышенных доз азотных удобрений (180—240 кг азота на 1 га) и орошение позволяют увеличить продуктивность молодых злаковых травостоев до 10 тыс. корм. ед. с 1 га, а при более длительном их использовании поддерживать продуктивность на уровне 6—8 тыс. корм. ед.

Важное значение при разработке системы удобрения луговопастбищных трав имеет правильный выбор сроков внесения удобрений.

Относительно небольшие дозы азота, порядка 50—90 кг на 1 га, применяемые как на преимущественно злаковых, так п бобовозлаковых травостоях, вносят в два срока — весной и в летний период. Внесение полной дозы в один срок весной приводит к неравномерному поступлению кормов, основная доля общего урожая приходится на первый укос или первые два цикла стравливания, а во второй половине лета трава быстро грубеет и плохо отрастает.

Более высокие дозы азотных удобрений на злаковых или преимущественно злаковых пастбищах применяются дробно — долями днократное внесение больших порм азотных удоббо приводит к резкому колебанию урожаев трав по ливания, может вызвать неблагоприятное для животјеменное накопление в кормах повышенного содержания питратов при одновременном снижении количества растіхаров.

живы в значительной степени зависит от срока их виссения дах в значительной степени зависит от срока их виссения инпе настбищного сезона, что обусловнено прежде всего колебими в уровие влагообеспеченности трав. На орошаемых настобицах действие азотных удобрений по циклам стравливания выравнивается и поступление настбищного корма в течение сезона нахолится в прямой зависимости от величины и распределения доз азота. Чем выше доза, тем больше прибавка урожая настбищных трав при последующем за внесением азота стравливании. При разовой дозе 60—90 кг N на 1 га последействие азотных удобрений может проявляться во втором (после внесения) цикле стравливания (либо укосе), меньише дозы азота последействием не обладают.

Дробное в равных дозах внесение азота весной и под каждое последующее стравливание на орошаемых настбищах обеспечивает равномерное поступление кормов, при этом стабилизируется содержание протениа в травах по циклам стравливания и по годам использования пастбища.

Кратность, сроки и дозы внесения азота имеют определяющее значение для обеспечения равномерного или наиболее хозяйственно выгодного поступления кормов с лугово-настбищных угодий, для организации зеленого конвейера.

Но влиянию на урожайность настбищных трав различные формы азотных удобрений в большинстве проводившихся в нашей стране полевых опытов оказались равноценными. В отдельных случаях, в зависимости от почвенно-климатических и других условий, возможно преимущество более нодвижных и быстродействующих, содержащих интратный азот удобрений, перед мочевиной и аммиачными удобрениями. При новерхностном внесении мочевины на лугах и настбищах могут происходить значительные потери ее азота в аммиачной форме, особенно на ночвах с нейтральной или слабощелочной реакцией. Жидкие аммиачные азотные удобрения вносятся на лугах и настбищах непосредственно в ночву с разрезацием деришны специальными машинами.

Фосфорно-калийные удобрения при создании сеяных лугов и настбищ лучше вносить под глубокую вспашку, при этом они применяются в повышенных дозах из расчета на длительный период использования. При заложении и создании культурных настбищ в дерново-подзолистой зоне целесообразно применение фосфоритной муки, обладающей длительным действием.

На существующих естественных и сеяных травостоях фосфорнокалийные удобрения при средних пормах от 40 до 90 кг действующего вещества на 1 га следует вносить весной с последующим боронованием. При использовании больших количесть на настбищах они могут вноситься дробно в течено азотными удобрениями.

Применение одинх фосфорных и калийных удобрествает резкое повышение продуктивности лугов на низи ходных осущенных болотах, как правило, бедных калие обеспеченных азотом за счет разложения органического Сбор сена в этих условиях при внесении фосфора и калия польногочисленных опытов практически удванвается и может досучения более с гектара. На суходольных и заливных лугах присурожайности сена от фосфора и калия ниже (табл. 69) и болького фект дает применение полного минерального удобрения, педущам роль в повышении урожая принадлежит азоту (табл. 70).

Таблица 69 Влияние фосфорных и калийных удобрений на урожайность сена трав разных тинов лугов (ң с 1 га)

Тин зугов	Уродайнеть без удобрений	Прибанка уро- валиости от фос- фора	Unc.ro otheron	N pounitineers dea yxoopenmi	Прибанка уро- жайности от ка-	Число опытов	У резийность без удобрений	Ilpudanta ypo- asaimeeru or PK	Число опытов
Суходольные и до-	19,1	4,3	111	19,2	2,6	112	20,3	9,5	258
влажные) На осущенных пи- зиных и пере-	19,5	8,5	61	' 21,2	14,2	69	20,8	22,4	148
ходных болотах Заливцые	29,4	2,8	51	28,1	3,2	50	31,2 	5,2	120

Таблица 70 Действие азота и полного минерального удобрения на урожайность сена лугов (ц с 1 га)

Тин зугов	Урожий- иготі, баз удабре- ний	Прибавна уромей- пости от азота	трисло		Hpmöarna Npomañ- moetn or NPK	Чие по опытов
Суходольные долин-	18,5	8,2	44	18,8	16,3	191
ные) На осущенных пи- зициых и переход-	22,1	10,9	7	21,7	28,7	91
ных болотах Заливные	26,6	10,8	58	30,2	12,6	117

в 3—5 сроков. Омикроудобрений — медных на торфянистых почвах, рений неизбежна кислых почвах, борных на известнованных дерноциклам стравл и темноцветных почвах — может оказать высокое ных кратков; е влияние на высоту и качество урожая лугов и настпротеина и

воримых стивность вновь создаваемых сеяных сенокосов и пастбищ Эффетельной степени определяется уровнем плодородия почвы

пастбитлью ее предварительного окультуривания.

в тече ень благоприятно в связи с этим применение на почвах с низбанг содержанием гумуса навоза, торфа и других органических удогрений. Они заделываются глубоко в почву плугом при проведении культуртехнических работ.

Применение минеральных удобрений на сенокосах и пастбищах оказывает существенное влияние на качество получаемых кормов как вследствие изменения ботанического состава травостоя, так и химического состава растений. При внесении фосфорно-калийных удобрений увеличение урожайности сопровождается повышением бобовых в травостое и возрастанием относительного содержания протеина в кормах. При правильном применении азотных удобрений на фоне сбалансированного фосфорно-калийного питания сохраняется высокое качество сена и пастбищного корма, обеспечивается повышение содержания протеина, сырого жира, зольных элементов и витаминов. В то же время высокие разовые дозы азота, особенно при низком уровне фосфорно-калийного питания, могут приводить к уменьшению доли бобовых на бобово-злаковых травостоях, а на преимущественно злаковых или чисто злаковых травостоях вызывать чрезмерное увеличение содержания протеина в травах, снижение содержания в кормах растворимых углеводов и установление менее благоприятного для животных сахаро-протеинового соотношения. При одностороннем увеличении доз азота возможно также избыточное накопление в кормах нитратного азота, токсичного для животных в концентрациях свыше 0,22%.

При разовых дозах азота 60—80 кг на 1 га на фоне фосфорнокалийных удобрений не наблюдается ухудшения качества кормов.

ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРИМЕНЕНИЯ УДОБРЕНИЙ*

ПОКАЗАТЕЛИ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ УДОБРЕНИЙ

В сельскохозяйственных предприятиях и научных учреждениях ведутся поиски путей и способов наиболее эффективного использования минеральных и органических удобрений. Совершенствуются техника, технология и организация их применения, улучшаются ассортимент и качество, выявляются оптимальные дозы и соотношения удобрений, лучшие сроки и способы их внесения, определяется наиболее целесообразное распределение ресурсов удобрений по сельскохозяйственным культурам, хозяйствам, районам и зонам страны.

Разнообразные пути и способы улучшения использования удобрений направлены в конечном счете на достижение основной цели — повышение урожайности культур и эффективности сельскохозяйственного производства. Для выбора и внедрения наиболее эффективных способов применения удобрений необходима их предварительная проверка и экономическая оценка.

В каждом конкретном случае такая оценка производится исходя из критерия и показателей народнохозяйственной эффективности. Это значит, что для отдельных предприятий экономически эффективно то, что эффективно для народного хозяйства. И, наоборот, то, что эффективно для народного хозяйства, должно быть эффективно и для отдельных предприятий.

Народнохозяйственная эффективность характеризуется повышением производительности общественного труда, которое выражается в росте объема производства продукции и национального дохода. Чем больше такой рост, тем выше народнохозяйственная эффективность. Это достигается увеличением объема производства и повышением качества продукции, сокращением затрат живого и овеществленного труда на единицу продукции, ростом чистого дохода в отдельных предприятиях.

Сельское хозяйство имеет свои специфические особенности по сравнению с другими отраслями народного хозяйства. Одна из таких особенностей состоит в том, что экономический процесс воспроизводства здесь тесно переплетается с естественным процессом воспроизводства. Производительность сельскохозяйственного труда,

^{*} Глава 7 написана кандидатом экономических наук, доцентом В. П. Фефеловым.

а значит, и экономическая эффективность в большой степени зависят от природных условий, от уровня продуктивности земли.

Исходя из этих положений, экономическая эффективность применения удобрений в сельскохозяйственных предприятиях определяется на основе системы следующих основных показателей: выход продукции с единицы земельной площади с учетом ее качества, производительность труда, себестоимость продукции, чистый доход и рентабельность производства. Эти показатели характеризуют влияние удобрений на конечные результаты производства продукции в хозяйстве при прочих равных условиях. Они взаимосвязаны и взаимообусловлены. Чем больше выход продукции и лучше ее качество, выше производительность труда, ниже себестоимость, больше чистый доход и выше рентабельность производства, тем выше экономическая эффективность применения удобрений.

При оценке способов применения удобрений, влекущих за собой изменение капитальных вложений в производственные фонды, в качестве основного показателя берется величина капитальных вложений и их окупаемость. Чем меньше требуется капитальных вложений и быстрее окупаются дополнительные капиталовложения, тем выше экономическая эффективность способов применения удобрений при прочих равных условиях. При оценке вариантов капитальных вложений, например способов механизации работ по применению удобрений, в качестве основного используется показатель приведенных затрат — суммы себестоимости продукции или работ и части капитальных вложений, пропорциональной нормативному коэффициенту их эффективности. Наиболее эффективным является вариант капитальных вложений, имеющий мипимум приведенных затрат при прочих равных условиях.

Совокупность названных основных показателей позволяет сделать достаточно полную и правильную экономическую оценку применения удобрений.

Следует отметить, что в практике иногда используется более простой способ экономической оценки удобрений на основе соизмерения двух показателей: дополнительных производственных затрат на применение удобрений и стоимости прибавки урожая от них. Дополнительные затраты включают: стоимость удобрений; затраты на выполнение работ по их применению (начиная от приемки от поставщиков и кончая внесением в почву); затраты на уборку прибавки урожая. Стоимость прибавки урожая устанавливается по государственным закупочным ценам.

Разность между стоимостью прибавки урожая и дополнительными производственными затратами дает чистый доход, получаемый в результате применения удобрений. Чем больше такой доход, тем выше экономическая эффективность удобрений.

Отношение стоимости прибавки урожая к дополнительным затратам выражает их окупаемость, т. е. показывает, сколько на каждый рубль дополнительных затрат на применение удобрений получается дополнительной продукции в денежном выражении.

Отношение дополнительного чистого дохода к дополнительным затратам определяет рентабельность применения удобрений.

Однако такой способ оценки характеризует эффективность лишь дополнительных затрат и не дает ответа на вопрос, как изменяются конечные показатели процесса производства продукции в результате применения удобрений. Более высокая окупаемость дополнительных затрат прибавкой урожая, как будет показано дальше, может не совпадать с лучшими конечными показателями производства продукции.

Поэтому такой способ оценки, особенно через показатель окупа-емости дополнительных затрат прибавкой урожая, не должен без необходимости подменять собой более полную оценку по названным выше основным показателям, характеризующим влияние удобрений на улучшение конечных результатов процесса производства продукции.

Рассмотрим конкретные примеры экономической оценки применения удобрений.

ЭКОНОМИЧЕСКАЯ ОЦЕНКА ПРИМЕНЕНИЯ УДОБРЕНИЙ В ХОЗЯЙСТВЕ

Оценка применения удобрений под отдельные сельскохозяйственные культуры. Для организации рационального использования удобрений необходимо знать, какой результат дает применение их под отдельные сельскохозяйственные культуры в конкретных условиях производства. Обоснованный вывод может быть сделан на основе предварительной проверки влияния удобрений на повышение урожайности, улучшение качества продукции и всесторонней экономической оценки.

Такая оценка проводится по примерной схеме и показателям, представленным в таблице 71.

В качестве примера рассмотрен производственный опыт по выращиванию озимой пшеницы, проведенный в учхозе «Михайловское» (Московская область).

В опытном варианте были внесены минеральные удобрения: аммиачная селитра — 4,3 ц, суперфосфат гранулированный — 1,6 ц и клористый калий — 1,2 ц на 1 га.

Затраты труда и материально-денежных средств рассчитаны на основе техники, технологии и организации выполнения работ, а также нормативов, действующих в данном хозяйстве. Превышение затрат труда и всех производственных затрат в расчете на гектар в опытном варианте обусловливается дополнительными расходами на применение минеральных удобрений и на уборку прибавки урожая.

Из анализа таблицы 71 видно, что применение минеральных удобрений под озимую пшеницу дает весьма большой экономический эффект: Прибавка зерна составила 28 ц на 1 га. Благодаря такому росту урожайности производительность труда возросла на 23%, себестоимость производства центнера зерна снизилась с 11 до 5,52 руб., или на 50%. В результате чистый доход от реализации продукции

	Вари	анты
Показатели	контроль (без удобрений)	опыт (NPK)
Урожай с 1 га (ц): зерна соломы	16 24	44 66
Стоимость урожая с 1 га (руб.)	210	576
Затраты труда (в человеко-часах): па 1 га на 1 д зерна Рост производительности труда (%) Производственные затраты па 1 га (руб.) Себестоимость 1 ц зерна (руб. — коп.) Снижение себестоимости (%) Чистый доход (руб. — коп.):	29 1,6 ———————————————————————————————————	64 1,3 23 272 5—52 50
иа 1 га на 1 человеко-день на 1 руб. производственных затрат	13—00 3—14 0—07	304—00 33—26 1—12 112
Рентабельность производства (%) Цополнительные капитальные вложения на	. 7	17
1 га (руб.) Срок окупаемости дополнительных капитало-	-	0,06
вложений (в годах) Экупаемость дополнительных производствен- ных затрат прибавкой урожая (руб.—коп.)	-	4—88

в расчете на гектар посева увеличился с 13 до 304 руб., то есть на 291 руб. Каждый рубль, затраченный на производство пшеницы в опытном варианте, дал 1,12 руб. чистого дохода против 0,07 руб. в контроле. Следовательно, рентабельность производства пшеницы повысилась с 7 до 112%.

Применение минеральных удобрений вызвало дополнительные капитальные вложения в хозяйстве на строительство хранилищ, приобретение транспортных средств и машин для внесения в общей сумме 17 руб. на 1 га посева. Эта величина настолько мала по сравнению с приростом чистого дохода, что срок окупаемости составил всего 0,06 года (17 руб.: 291 руб.). Такой величиной дополнительных капитальных вложений практически можно пренебречь.

Из таблицы видно также, что дополнительные текущие производственные затраты, связанные с применением минеральных удобрений и уборкой прибавки урожая в опытном варианте против контрольного, составили 75 руб. на 1 га (272 руб.—197 руб.). Стоимость прибавки урожая равна 366 руб. (576 руб.—210 руб.), следовательно, окупаемость дополнительных производственных затрат равна 4,88 руб. (366 руб.: 75 руб.). Разница между стоимостью прибавки урожая и дополнительными производственными затратами дает

дополнительный доход в расчете на гектар посева в сумме 291 руб. (366 руб.—75 руб.).

При этом важно отметить, что себестоимость центнера прибавки урожая зерна обходится всего в 2,39 руб.

Рентабельность применения удобрений в данном примере составляет 388% [(291 руб.: 75 руб.)×100].

Аналогичным методом проводится экономическая оценка применения удобрений под другие культуры. В результате может быть сделан сравнительный анализ эффективности применения удобрений под различные сельскохозяйственные культуры и выявлены наиболее эффективные варианты.

Оценка применения удобрений с учетом изменения качества продукции. Методика экономической оценки применения удобрений имеет специфические особенности в тех случаях, когда наряду с повышением урожая изменяется качество продукции. В качестве примера рассмотрим результаты полевого опыта кафедры агрохимии ТСХА, проведенного в совхозе «Висловский» Ростовской области в 1973—1975 гг. (табл. 72).

В опытном варианте были внесены минеральные удобрения: сульфат аммония — 4,5 ц, суперфосфат простой — 4 ц, хлористый калий — 0,7 ц и ингибитор нитрификации — смесь пиридинов (СП) из расчета 2% от дозы азота (1,8 кг на 1 га). Фосфорные и калийные удобрения вносились при основной обработке почвы, азотные с ингибитором — 50% основное внесение, 50% — подкормка. Сорт пшеницы Мироновская юбилейная.

Из таблицы 72 видно, что применение минеральных удобрений в сочетании с ингибитором нитрификации под озимую пшеницу в данных условиях дает прибавку урожая зерна 16,5 ц на 1 га. Вместе с тем изменяется и качество зерна. Содержание сырой клейковины возрастает до 32% против 28,3% в контроле. Такое изменение качества продукции, несомненно, должно найти свое отражение при оценке.

Повышение качества сельскохозяйственной продукции можно рассматривать как увеличение ее потребительной стоимости. Поэтому оно должно быть отражено в более высоких ценах на продукцию.

Для стимулирования производства и продажи государству пшеницы с повышенным содержанием клейковины действующим прейскурантом предусматривается соответствующая надбавка к закупочной цене.

Государственная закупочная цена центнера зерна озимой пшеницы для данной зоны без учета надбавки составляет 7,1 руб. При содержании сырой клейковины 28—31% установлена надбавка к закупочной цене в размере 30%, а при содержании клейковины 32% и выше такая надбавка составляет 50%. Следовательно, закупочная цена с учетом надбавки за клейковину в первом случае будет 9,23 руб., во втором — 10,65 руб.

Сучетом этих надбавок и производится денежная оценка про-

дукции в сравниваемых вариантах. В контроле стоимость зерна, содержащего 28,3% клейковины, оценивается по 9,23 руб. за центнер и составляет 254 руб.; в опыте, где зерно имеет 32% клейковины,— по 10,65 руб. и составляет 469 руб. на 1 га.

Соответственно и остальные стоимостные показатели, используемые для экономической оценки, рассчитываются с учетом данного фактора.

Таблица 72 Экономическая эффективность применения минеральных удобрений и ингибитора нитрификации под озимую пшеницу с учетом качества зерна

	Вариант	ъ опыта
Показатели	контроль (без удобрений)	опыт (NРК+СП)
Урожай зерна с 1 га (ц)	27,5	44,0
Содержание клейковины (%)	28,3	32,0
Стонмость зерна (руб.):	40-	0.1.0
без учета надбавки за клейковину	195	312
с учетом надбавки за клейковину	254	469
Производственные затраты на 1 га (руб.)	154	203
Себестоимость 1 ц зерна (руб. — коп.)	560	4—61
Выход продукции на 1 руб. производствен-		
ных затрат (руб. — коп.):	4 05	4 51
без учета надбавки за клейковину	1-27	1-54
с учетом надбавки за клейковину	165	2—31
Чпстый доход на 1 га (руб.):		400
без учета надбавки за клейковину	41	109
с учетом надбавки за клейковину	100	266
Чистый доход на 1 руб. производственных]	
затрат (руб. — коп.):	0.07	0 ~/
без учета надбавки за клейковину	0-27	0-54
с учетом надбавки за клейковину	0-65	1—31
Рептабельность производства зерна (%):	0.7	
без учета надбавки за клейковину	27	54
с учетом надбавки за клейковину	65	131
Окупаемость дополнительных производствен-	}	1
ных затрат прибавкой урожая (руб.—коп.):		0 00
без учета надбавки за клейковину	_	2—39
с учетом надбавки за клейковин у	_	4-39

Кроме того, наряду с показателем себестоимости продукции в натуральном измерении используется также обратный показатель — выход продукции в денежном выражении с учетом надбавки за клейковину в расчете на рубль производственных затрат.

Все это обеспечивает учет качества продукции и необходимую сопоставимость оцениваемых вариантов. Установленные таким способом стоимостные показатели являются решающими для окончательных выводов.

С целью сравнения методов оценки в таблице 72 наряду со стоимостными показателями, установленными с учетом надбавки клейковину, приводятся также соответствующие показатели оценки без учета качества продукции. Здесь хорошо видна разница в оценке вариантов опыта по тем и другим показателям. Так, выход продукции с гектара посева возрастает в опыте по сравнению с контролем в следующих размерах; в натуральном измерении — в 1,6 раза, или на 60%, в стоимостном выражении с учетом надбавки за клейковину — в 1.85 раза, или на 85%; разница в оценке по данному показателю — 25%. Выход продукции в стоимостном выражении в расчете на 1 руб. производственных затрат увеличивается соответственно: в первом случае (без учета надбавки за клейковину) па 21.3% , во втором (с учетом надбавки) — на 40% ; разница в оценке 18,7%. Чистый доход на гектар посева возрастает в опыте по сравнению с контролем: без учета надбавки за клейковину на 68 руб., с учетом надбавки за клейковину на 166 руб.; разница в оценке 98 руб. Каждый рубль дополнительных затрат на применение удобрений и уборку прибавки урожая дает дополнительной продукции: без учета надбавки за клейковину — на 2,39 руб., с учетом надбавки — на 4,39 руб.

Это, конечно, весьма существенная разница в результатах экономической оценки. Она может быть еще больше при более значительных различиях в качестве продукции по сравниваемым вариантам. Поэтому правильная экономическая оценка и обоснованные выводы могут быть сделаны при условии обязательного учета и правильного отражения качества продукции.

Обоснование оптимальных доз удобрений. Различные дозы и соотношения удобрений дают соответственно различные конечные результаты. В связи с этим возникает необходимость экономического обоснования оптимальных доз и соотношений удобрений, которые обеспечивают в конкретных условиях более высокую экономическую эффективность производства продукции. Такое обослование дается по примерной схеме и показателям, представленным в таблице 73.

В качестве примера рассматриваются результаты опыта, проведенного на опытной станции «Барыбино» (Московская область). Опыт проведен в севообороте, типичном для данных условий. Картофель сорта Лорх, предшественник — овес. Почва дерново-подзолистая, тяжелосуглинистая, среднеокультуренная. Фон опыта: навоз 20 т на 1 га средней степени разложения. Минеральные удобрения вносились в форме аммиачной селитры, гранулированного суперфосфата и калийной соли.

Из анализа таблицы 73 можно сделать следующие выводы. По экономической эффективности, определяемой на основе системы показателей, отчетливо выделяются 6, 9 и 12-й варианты. Из них лучшие конечные результаты производства картофеля в целом обеспечивает 12-й вариант: максимальный урожай и чистый доход, самые низкие ватраты труда и себестоимость продукции, хотя по

Экономическая эффективность различных доз и соотношений минеральных удобрений под картофель

	1 ra)	a на 1)	, 1 д	Ę	Імстый доко (руб. — коп	rь (%)	до- х за- ой уро- коп.)	
Варианты опыта	Уромай (ц с	Затраты труда 1 ц (чслдвей)	Себестоимость (руб. — коп.)	на 1 га	на 1 чел день	на 1 руб. затрат	Рентабельность производства (%)	Окупасмость до полнительных трат прибавкой жан (руб. — ко
1. Контроль (навоз) 2. $N_{45}P_{45}$ 3. $P_{45}K_{45}$ 4. $N_{45}K_{45}$ 5. $N_{45}P_{45}K_{45}$ 6. $N_{90}P_{45}K_{45}$ 7. $N_{45}P_{90}K_{45}$ 8. $N_{45}P_{45}K_{90}$ 9. $N_{90}P_{90}K_{45}$ 10. $N_{90}P_{45}K_{90}$ 11. $N_{45}P_{90}K_{00}$	140 206 160 183 221 235 225 212 239 225 217 243	0,30 0,24 0,28 0,26 0,23 0,23 0,23 0,24 0,23 0,23 0,24	5—80 4—23 5—24 4—66 4—00 3—83 3—98 4—16 3—82 3—99 4—12 3—77	168 570 282 429 663 744 680 603 761 677 626 784	4-00 11-45 6-34 9-11 12-87 13-98 13-05 11-98 14-14 12-97 12-20 14-44	0—21 0—65 0—34 0—50 0—75 0—83 0—76 0—68 0—83 0—75 0—75 0—85	21 65 34 50 75 83 76 68 83 75 70 85	7—70 5—38 7—53 7—88 7—47 7—17 7—30 6—93 6—92 6—65 6—87

показателю окупаемости дополнительных производственных затрат прибавкой урожая он уступает другим вариантам. В условиях достаточной обеспеченности удобрениями данный вариант может быть принят как наиболее эффективный. На основе этого варианта могут быть разработаны также соответствующие нормативы.

Более детальный анализ показывает, что высокоэффективен также вариант 6. По показателям эффективности производства продукции он лишь незначительно уступает вариантам 9 и 12. В то же время здесь израсходовано значительно меньше фосфорных и калийных удобрений. Поэтому в условиях недостатка удобрений, особенно фосфорных, предпочтение может быть отдано варианту 6. Сэкономленные удобрения могут быть использованы с большей эффективностью на других участках производства. Окончательные выводы и предложения по данному вопросу делаются, естественно, с учетом допустимых ошибок в опытах. В рассмотренном примере приводятся все варианты опыта с целью сохранения принятой его схемы.

Оценка систем удобрения в севообороте может быть рассмотрена на примере длительного опыта по изучению различных систем удобрения в 8-польном севообороте, проведенного под руководством проф. И. В. Гулякина в учхозе «Дубки» (Московская область).

В севооборот входят: озимая піпеница, ячмень, овес, картофель, кормовые корнеплоды, кукуруза на силос, два поля многолетних трав на сено.

Изучались пять вариантов системы удобрений.

Первый, контрольный вариант — рядковое удобрение, которое является фоном, норма внесения — 0,5 ц стандартных туков на 1 га по всей площади севооборота.

Во втором варианте наряду с рядковым удобрением вносился навоз под пропашные культуры по 10 т на 1 га пашни.

Третий вариант — полное минеральное удобрение, в среднем 9,6 ц туков на 1 га пашни за ротацию севооборота.

Четвертый вариант — сочетание половинных доз органических и минеральных удобрений: 5 т навоза и 4,8 ц туков на 1 га площади севооборота.

Пятый вариант — сочетание полных доз органических и минеральных удобрений: 10 т навоза и 9,6 ц туков на 1 га.

Экономическая оценка систем удобрений проводится по примерной схеме и показателям, представленным в таблице 74.

Таблица 74 Экономическая эффективность систем удобрения в севообороте

	Систе	истема удобрения (вариант опыт			
Показатели	1	2	3	4	5
Выход валовой продукции с 1 га (ц корм. ед.) Производительность труда — выход продукции на 1 человеко-день (ц корм. ед.) Себестоимость 1 ц корм. ед. (руб. — коп.)	17,9 1,74 12—29	31,0 2,12 9—26	33,6 2,14 8—27	34,5 2,13 8—32	39,9 2,19 8—35
Чистый доход (—убыток), (руб.—коп.): на 1 га на 1 челдень на 1 руб. затрат Рентабельность производства (%) Окупаемость дополнительных производственных затрат прибавкой урожая (руб. — коп.)	-16 -1-55 -0-07 -7	57 3—90 0—20 20 2—09	99 6—31 0—36 36 2—98	95 5—86 0—33 33 2—66	108 5—93 0—32 32 2—10

В расчет принята фактическая урожайность всех сельскохозяйственных культур в среднем за полную ротацию севооборота, то есть за 8 лет. Учтен выход как основной, так и побочной продукции. Выход валовой продукции всех культур в севообороте для сравнения установлен в сопоставимом измерении — в переводе на кормовые единицы и рассчитан на гектар всей площади севооборота.

Для расчета стоимо стных показателей выход продукции установлен также в денежном выражении. При этом товарные виды продукции оценены по государственным закупочным ценам. Продукция кормовых культур, на которую таких цен нет, оценена по закупочной

цене на овес, к центнеру которого приравнивается центнер кормовых единиц.

Производительность труда установлена как выход валовой продукции севооборота в расчете на человеко-день всех затрат труда на возделывание и уборку всех сельскохозяйственных культур.

Для расчета себестоимости центнера кормовых единиц предварительно были рассчитаны производственные затраты на возделывание и уборку всех культур, а затем объединены в общие производственные затраты по севообороту. Затраты труда и средств установлены, исходя из фактического их уровня в данном хозяйстве.

Из анализа таблицы 74 можно сделать следующие выводы. Применение в севообороте одних органических удобрений увеличивает выход продукции на 73%, одних минеральных — на 88%, сочетания половинных доз органических и минеральных удобрений — на 93%, а сочетания полных доз органических и минеральных удобрений увеличивает выход продукции на 123%. Следовательно, по данному показателю наиболее эффективным является пятый вариант системы удобрения.

Аналогичное положение складывается также по показателям производительности труда, сумме чистого дохода на гектар пашни при одинаковой себестоимости продукции. По остальным показателям пятый вариант несколько уступает третьему и четвертому.

Таким образом, пятый вариант хотя и имеет преимущества по наиболее обобщающим показателям эффективности, все же они не столь велики. Так, прибавка урожая и рост чистого дохода на гектар по сравпению, например, с четвертым вариантом составляют соответственно 5,4 ц корм. ед. и 13 руб., которые достигаются слишком дорогой ценой — дополнительным внесением 5 т навоза и 4,8 ц туков.

Поэтому окончательный вывод в данном случае может быть сделан с учетом всех преимуществ и недостатков сравниваемых вариантов и условий производства.

Для более детальной характеристики целесообразно в дополнение к анализу приведенных обобщающих показателей по севообороту в целом рассмотреть соответствующие показатели по отдельным культурам. Это позволит сделать выводы, необходимые для обоснования системы удобрения в хозяйстве.

Оценка применения удобрений по хозяйству в целом проводится сравнением результатов производства продукции на удобренных и неудобренных площадях. Фактические результаты на удобренных площадях находят свое отражение в отчетных документах. Результаты без удобрений устанавливают на основе производственных опытов, проводимых непосредственно в хозяйстве. С этой целью в хозяйственных посевах оставляют неудобренные площади, где и определяют исходный урожай.

Сравнение проводят по растениеводству в целом, отдельным его отраслям и культурам. При необходимости может быть сделано

сравнение и по всему сельскохозяйственному производству, включая другие отрасли.

Сравнительную оценку и выявление экономической эффективибсти применения удобрений в хозяйстве проводят в основном по тем же показателям, что и в рассмотренных примерах. Особенности могут быть лишь в методах расчета.

Например, для оценки результатов по растениеводству в целом берут следующие основные показатели: выход валовой продукции в денежном выражении в расчете на гектар пашни и посевной площади; производительность труда — выход валовой продукции в расчете на человеко-час или человеко-день затраченного труда; выход валовой продукции на рубль производственных затрат; чистый доход и прибыль в расчете на гектар пашни и посевной площади, на человеко-час, на рубль производственных затрат; рентабельность производстве; рентабельность применения удобрений.

Такие же показатели могут быть для оценки результатов в отдельных отраслях растениеводства: полеводства, овощеводства и др.

По отдельным культурам берут обычно следующие показатели: урожайность; затраты труда в человеко-часах на единицу продукции; себестоимость продукции; чистый доход и прибыль в расчете на гектар посевной площади, на человеко-час и на рубль производственных затрат; рентабельность производства и рентабельность применения удобрений.

Сравнивая по данным показателям результаты производства продукции на удобренных и неудобренных площадях, выявляют результаты, полученные за счет применения удобрений: прирост продукции, экономию труда и повышение производительности труда, экономию производственных затрат и степень снижения себестоимости продукции, прирост чистого дохода и прибыли, повышение рентабельности производства продукции.

Рентабельность применения удобрений определяют как отношение прироста чистого дохода и прибыли к затратам на применение удобрений. К таким затратам относятся стоимость удобрений и расходы на выполнение всех работ в хозяйстве по их применению.

К основным работам по применению минеральных удобрений относятся: получение от поставщиков и закладка на хранение, хранение на складе, погрузочно-разгрузочные работы, измельчение слежавшихся удобрений, смешивание, транспортировка и внесение.

В основные работы по применению органических удобрений входят: заготовка и закладка на хранение, приготовление компостов, погрузочно-разгрузочные работы, транспортировка и внесение.

Затраты на выполнение таких работ зависят от применяемой техники и ее использования, уровня механизации, технологии, типа складов и оборудования в них, расстояний транспортировки, доз внесения и других факторов. Поэтому они сильно варьируют по хозяйствам. Применение тонны минеральных удобрений может обходиться примерно в 5—20 руб. (склад — франко — поле), ор-

ганических — в 0,5—5 руб. и больше, не считая стоимости самих удобрений, которая устанавливается отдельно.

При необходимости экономическая оценка применения удобрений в хозяйстве может быть дана и более простым методом — на основе соизмерения дополнительных производственных затрат и стоимости прибавки урожая. Дополнительные затраты, как было показано выше, включают затраты на применение удобрений и уборку прибавки урожая. Отношение стоимости прибавки урожая к дополнительным затратам характеризует их окупаемость и показывает, сколько получено дополнительной продукции на рубль дополнительных затрат, связанных с применением удобрений. Разница между стоимостью прибавки урожая и дополнительными затратами дает дополнительный доход, полученный за счет применения удобрений. Отношение дополнительного дохода к затратам на применение удобрений характеризует рентабельность применения удобрений.

Определение экономической эффективности применения удобрений по результатам хозяйственной деятельности дает возможность оценить уровень их использования, сравнить с достижениями передовых хозяйств и действующими нормативами, выявить резервы дальнейшего улучшения использования удобрений и повышения на этой основе эффективности сельскохозяйственного производства.

Пути повышения экономической эффективности применения удобрений в хозяйстве. Практика показывает, что колхозы и совхозы имеют большие резервы повышения экономической эффективности применения удобрений. Прежде всего необходимо строго соблюдать рекомендации агрохимической службы, содержащие обоснованные ответы на вопрос о том, где, когда и как лучше применять удобрения. По данным ЦИНАО, окупаемость удобрений, внесенных по рекомендациям зональных агрохимических лабораторий, повышается на 25% в сравнении с применением удобрений без системы.

Исключительно большое значение имеет борьба с потерями удобрений на всем пути их движения до поля.

Большой экономический эффект дает совершенствование техники, технологии и организации работ по применению удобрений. Папример, применение разбрасывателей РУМ-8 и КСА-3 дает возможность снизить себестоимость внесения в 2 раза. Такой же результат дает использование разбрасывателей ПРТ-10, ПРТ-16, а также КСО-9 и РУН-15Б. Прямоточная технология внесения органических и минеральных удобрений по сравнению с перевалочной позволяет снизить себестоимость этих работ на 10—20%.

Исключительно велико значение комплексной механизации работ по применению удобрений. Так, механизация погрузочно-разгрузочных работ дает возможность повысить производительность труда в 20—50 раз и снизить себестоимость в 3—4 раза, в зависимости от типов погрузчиков. Механизация измельчения и смещивания минеральных удобрений на складе повышает производительность труда в 4—5 раз и снижает себестоимость в 2—3 раза. Внедрение системы

машин и комплексная механизация всех работ по применению минеральных удобрений на базе выпускаемой промышленностью техники по сравнению с наиболее распространенными способами их выполнения в колхозах и совхозах увеличивают производительность труда в 3—4 раза и снижают себестоимость в 1,5—2 раза. С внедрением новой, более совершенной техники эти показатели будут еще выше.

Весьма важными факторами, способствующими улучшению использования удобрений в хозяйстве, являются повышение общей культуры земледелия, внедрение более продуктивных сортов сельскохозяйственных культур, совершенствование структуры посевных площадей, мелиорация земель и другие мероприятия.

Исключительно большое значение для улучшения использования удобрений имеет совершенствование организации агрохимического обслуживания сельскохозяйственного производства.

НАРОДНОХОЗЯЙСТВЕННАЯ И ОТРАСЛЕВАЯ ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ УДОБРЕНИЙ

Критерием народнохозяйственной эффективности производственных затрат, в том числе на применение удобрений, является повышение производительности общественного труда, выражающееся в росте объема производства и национального дохода. Исходя из этого критерия, народнохозяйственная эффективность применения удобрений определяется следующими основными показателями:

прибавкой урожая в расчете на единицу земельной площади и на единицу удобрений в среднем по стране и отдельным районам;

стоимостью дополнительной продукции в оценке по средним розничным ценам на товары и продукты народного потребления, изготовленные из прибавки урожая от удобрений;

затратами на применение удобрений, уборку, доработку и реализацию дополнительной продукции в сфере сельского хозяйства, а также затратами общества на заготовку, переработку сырья, производство и реализацию конечных товаров и продуктов народного потребления;

чистым доходом от реализации конечных товаров и продуктов народного потребления, изготовленных из прибавки урожая от удобрений;

окупаемостью суммарных затрат на получение прибавки урожая, доведение продукции до конечных товарных кондиций и реализацию; капитальными вложениями в производство и применение удобрений и их окупаемостью.

Пример расчета народнохозяйственной эффективности применения минеральных удобрений под картофель дан в таблице 75.

Расчет сделан на основе данных ВНИЭСХ, НИИТЭХИМ, ВИУА, ЦИНАО и других организаций. Прибавка урожая на единицу удобрений принята по нормативам, утвержденным Министерством сельского хозяйства СССР по согласованию с Госпланом СССР на 1976—

Народнохозяйственная эффективность применения удобрений под картофель

Показатели		
1. Прибавка урожая картофеля от 1 т питательных веществ ми- неральных удобрений в среднем по стране (т)	26,6	
2. Средняя розничная цена на товары и продукты народного по- требления, изготовленные из 1 т прибавки урожая (руб.)	121	
3. Стоимость дополнительной продукции в оценке по средней розничной цене (руб.), (п. $2 \times n$. 1)	3219	
4. Затраты на получение прибавки урожая, производство и реа- лизацию конечных товаров и продуктов народного потребле-	1657	
ния (руб.) 5. Окупаемость затрат стоимостью дополнительной продукции (руб.), (п. 3:п. 4)	1,94	
6. Чистый доход от реализации конечных товаров и продуктов народного потребления (руб.):		
a) Beco $(\pi. 3 - \pi. 4)$	1562	
б) на 1 руб. затрат (п. 6а:п. 4)7. Капитальные вложения в производство и применение 1 т пита-	0,94 446	
тельных веществ удобрений (руб.)	_	
8. Срок окупаемости капитальных вложений (в годах) (п. 7:п. 6a) 9. Коэффициент эффективности капитальных вложений (п. 6a:п. 7)	0,3 3,5	

1980 гг. Капитальные вложения приняты по всем стадиям производства и применения удобрений, начиная от производства сырья для выработки удобрений и кончая внесением их в почву.

Из анализа таблицы 75 можно сделать вывод о высокой народнохозяйственной эффективности применения минеральных удобрений под картофель. Каждый рубль, затраченный на применение удобрений, уборку прибавки урожая, производство и реализацию конечных товаров и продуктов народного потребления, дает конечной дополнительной продукции на сумму 1,94 руб. и 0,94 руб. чистого дохода. Важно, что эти показатели достигаются при исключительно высокой окупаемости капитальных вложений. Срок их окупаемости чистым доходом составляет 0,3 года.

Аналогичным методом определяют народнохозяйственную эффективность применения удобрений под другие культуры и в целом по производству продуктов растениеводства.

В основном по такой же схеме устапавливают и отраслевую эффективность применения удобрений (табл. 76).

При этом стоимость прибавки урожая оценивают не по розничным ценам, а по средним заготовительным ценам на сельскохозяйственные продукты, реализуемые колхозами и совхозами государству. Соответственно и затраты на получение прибавки урожая включают затраты на применение удобрений, уборку прибавки урожая, доработку и реализацию сельскохозяйственных продуктов.

Показатели	
1. Прибавка урожая картофеля от 1 т питательных веществ ми-	26,6
неральных удобрений в среднем по стране (т)	·
2. Средняя заготовительная цена за 1 т картофеля (руб.)	79
3. Стоимость прибавки урожая (руб.), (п. $2 \times \pi$. 1)	2101
4. Затраты на получение и реализацию прибавки урожая (руб.)	354
5. Окупаемость затрат стоимостью прибавки урожая (руб.), (п. 3:п. 4)	5,94
6. Чистый доход от реализации прибавки урожая (руб.):	
a) Beco (π . 3 — π . 4)	1747
б) на 1 руб. затрат (п. 6а:п. 4)	4.94
7. Капитальные вложения на применение 1 т питательных веществ удобрений (руб.)	4,94 7 0
8. Срок окупаемости капитальных вложений чистым доходом в годах (п. 7:п. 6a)	0,04
9. Коэффициент эффективности капитальных вложений (п. 6а:п. 7)	25,0

Точно так же и капитальные вложения, связанные с применением удобрений, устанавливают в границах отрасли сельского хозяйства.

Из таблицы 76 видно, что отраслевая эффективность применения удобрений под картофель очень высока. Она даже значительно выше народнохозяйственной эффективности.

По результатам расчетов, сделанных приведенными выше методами, проводят сравнительную оценку народнохозяйственной эффективности применения удобрений под различные сельскохозяйственные культуры и выявляют наиболее эффективные варианты.

Основными путями повышения народнохозяйственной эффективности применения удобрений являются: удешевление производства удобрений и снижение отпускных цен на них, улучшение ассортимента и соотношения азотных, фосфорных и калийных удобрений, повышение их физических качеств, концентрации питательных веществ в туках, увеличение выпуска комплексных (сложных и смешанных) форм удобрений, сокращение транспортных расходов, расширение бестарной перевозки, наиболее целесообразное распределение удобрений по зонам и районам страны, по сельскохозяйственным культурам.

Данные научных учреждений Географической сети опытов показывают значительные колебания в эффективности применения удобрений по почвенным зонам страны и культурам. Лучине результаты достигаются на дерново-подзолистых, серых лесных почвах и выщелоченных черноземах, преимущественно в западных и северо-западных районах с достаточным увлажнением, а также на сероземах и каштановых почвах при орошении.

На дерново-подзолистых почвах увлажненной европейской части РСФСР, особенно в районах северо-запада, в Прибалтийских рес-

публиках, Белорусской ССР и Полесья Украинской ССР достигается прибавка урожая озимых зерновых 7,2—8,5 ц и яровой пшеницы 6,4 ц, чистый доход 56—85 руб. в расчете на гектар. Каждый рубль, вложенный в применение удобрений, дает дополнительной продукции на 3—4 руб.

Наиболее высокая эффективность здесь получается и по картофелю, а для районов Центрально-черноземной зоны, Северного Кавказа, Молдавской ССР — также по кукурузе и сахарной свекле.

Высокая эффективность применения удобрений на дерновоподзолистых почвах Нечерноземной зоны может быть показана на примере производственных данных опытного хозяйства «Новосельское» (Калужская область). Здесь па бедных по плодородию почвах на основе использования туков урожайность зерновых возросла с 13,4 ц в среднем за 1961—1965 гг. до 26,2 ц в 1971 г., картофеля соответственно с 74,4 до 150,5 ц с 1 га. Себестоимость 1 ц зерна снизилась с 13,6 руб. до 7,4 руб., а окупаемость затрат на применение удобрений составила в среднем по всем культурам соответственно 2,58 и 3,03 руб.

В Нечерноземной зоне 7—8 ц туков дают урожай порядка 25—27 ц с 1 га. Передовые хозяйства Московской, Ленинградской и других областей получают урожаи зерна по 40—50 ц, картофеля по 200—300 ц с 1 га.

Важную роль в повышении эффективности применения удобрений в Нечерноземной зоне играет известкование кислых почв. Каждая тонна внесенной извести обеспечивает прирост урожая от удобрений 6—7 ц корм. ед. с 1 га. Стоимость такой прибавки урожая около 50 руб., затраты же на известкование 8—10 руб. Следовательно, каждый рубль, израсходованный на известкование, дает 5—6 руб. дохода.

По данным Научно-исследовательского института сельского хозяйства центральных районов Нечерноземной зоны, эффективность минеральных удобрений при известковании кислых почв возрастает в 1,5—2,5 раза.

В зоне серых лесных почв и черноземов, особенно в районах с относительно меньшей влагообеспеченностью, эффективность удобрений ниже. Окупаемость затрат на них под зерновые 1,3—2,5 руб.

Высокая отдача от удобрений достигается на предкавказских черноземах. Относительно меньше она на южных черноземах и каштановых почвах в степной зоне и засущливых районах Юго-Востока страны. В засушливой зоне Поволжья и Северного Кавказа окупаемость рубля затрат под зерновые 1,1 руб. На каштановых почвах и сероземах при орошении окупаемость рубля затрат резко возрастает и достигает по пшенице 3—4,5 руб., по рису — 9—12 руб.

В связи с возрастающим объемом перевозок и транспортных расходов все большее народнохозяйственное значение приобретает повышение концентрации питательных веществ в туках, способствующее сокращению затрат на их применение. В среднем по стране затраты труда на применение тонны туков составляют примерно

24 человеко-часа и материально-денежных средств 17 руб., в том числе на транспортировку и складскую переработку более 70%. С увеличением концентрации туков и заменой односторонних (простых) удобрений комплексными затраты труда на их применение могут быть сокращены до 3-5 человеко-часов и производственные затраты до 9-10 руб. на 1 т.

Увеличение содержания питательных веществ в туках на 10% сокращает производственные затраты на транспортировку и хранение на 25%, а потребность в подвижном железнодорожном составе и автотранспортных средствах — в 1,5—2 раза. Вместе с тем снижаются расходы на строительство складов, на работы по погрузке, разгрузке и внесению туков.

Самым концентрированным и дешевым азотным удобрением является безводный аммиак. В нем содержится 82,3% азота. О народнохозяйственной эффективности применения безводного аммиака по сравнению с аммиачной селитрой видно из следующих данных: затраты труда на производство и применение сокращаются в 2,2 раза, себестоимость снижается на 24%, капитальные вложения — на 14%, приведенные затраты — на 16%.

Большой эффект дают сложные удобрения. Так, применение аммофоса по сравнению с азотнофосфорными смесями одинарных удобрений увеличивает доход с гектара: при внесении под хлопчатник — на 49 руб., под картофель — на 30, под зерновые культуры — на 14 руб.

Соответственно возрастает и окупаемость затрат на применение туков.

Повышение физических качеств удобрений обеспечивает экономию затрат труда в колхозах и совхозах на их подготовке к внесению, которая составляет ежегодно около 1 млн. человеко-дней.

АГРОХИМИЧЕСКАЯ СЛУЖБА

Рациональное применение удобрений, химических мелиоратов и средств защиты растений в большой степени зависит от организации агрохимического обслуживания колхозов, совхозов и других сельскохозяйственных предприятий. Важную роль в этом играет агрохимическая служба, которая является связующим звеном между наукой и производством в вопросах химизации сельского хозяйства.

Постановлением правительства в 1964 г. в нашей стране создана единая государственная агрохимическая служба. В состав ее входят следующие звенья:

Главное управление химизации Министерства сельского хозяйства СССР, главные управления, управления и отделы химизации министерств сельского хозяйства союзных республик, автономных республик, краев и областей;

Центральный институт агрохимического обслуживания сельского хозяйства (ЦИНАО) и его филиалы в разных зонах страны;

зональные агрохимические лаборатории, организованные во всех областях, краях и автономных республиках;

отделы и секторы агрохимической службы при республиканских и зональных научно-исследовательских институтах;

агрохимические лаборатории колхозов, совхозов и других сельскохозяйственных предприятий.

Государственная агрохимическая служба проводит агрохимическое обследование земель колхозов и совхозов; выполняет необходимые массовые анализы почв, растений и удобрений; проводит полевые и производственные опыты по изучению эффективности удобрений; разрабатывает рекомендации по рациональному применению удобрений и средств химической мелиорации почв; контролирует правильность их применения в колхозах и совхозах; определяет качество применяемых удобрений и других химических средств; проводит химические анализы кормов для установления их питательной ценности и выдает хозяйствам обоснованные рекомендации по их использованию; учитывает экономическую эффективность химизации сельскохозяйственного производства.

Основой агрохимической службы являются 200 зональных агрохимических лабораторий. На них возложена задача обеспечить внедрение в сельскохозяйственное производство новейших достижений науки и практики по наиболее эффективному использованию удобрений и других средств химизации.

Каждая зональная лаборатория обслуживает территорию от 1 до 2 млн. га сельскохозяйственных угодий. Как правило, во всех зональных лабораториях имеются два самостоятельных отдела: оперативный с группами агрохимического обследования сельскохозяйственных угодий, полевых опытов с удобрениями и аналитический с группами по анализу почв, удобрений, кормов и растений. Для обслуживания указанных отделов в лабораториях введены картографическая группа и инженеры по приборам и оборудованию. Зональные лаборатории оснащены новейшим оборудованием и приборами. Для выполнения массовых анализов почв с высокой производительностью в лабораториях организованы поточные линии этих анализов.

Зональные лаборатории проводят агрохимическое обследование земель колхозов и совхозов своей зоны по единой методике в среднем один раз в 4—5 лет, а в районах с низким уровнем химизации один раз в 5—7 лет. Для этой цели лаборатории отбирают смешанные образцы пахотного горизонта почв, в среднем один образец с площади пашни от 1—3 до 10—20 га. Частота отбора смешанных образцов зависит от пестроты почвенного покрова и интенсивности применения удобрений. Почвенные смешанные образцы повсеместно составляют из 20—40 индивидуальных проб.

В образцах определяют содержание подвижных форм фосфора и калия, кислотность, иногда дополнительно определяют содержание азота, микроэлементов и другие показатели. Методы анализов и их виды унифицированы для каждой почвенно-климатической

зоны. Для более полной характеристики почв на конкретных полях и участках закладывают почвенные разрезы с отбором образцов по горизонтам.

Число анализируемых показателей может расширяться от 3 до 15, в зависимости от почвенно-климатических условий. В почвенных образцах предусмотрено определение механического состава, гидролитической кислотности, суммы поглощенных оснований, содержания гумуса, магния, степени и характера засоления и других показателей. Агрохимическое обследование проводится на всех пахотных угодьях, сенокосах, пастбищах, в садах и виноградниках.

Зональные агрохимические лаборатории проводят полевые опыты с удобрениями в колхозах и совхозах на почвах, распространенных в зоне деятельности лаборатории и различающихся по генетическим особенностям и содержанию питательных элементов.

Главная цель таких опытов — установление оптимальных доз удобрений для различных культур в зависимости от обеспеченности почв питательными веществами и величины запланированных урожаев. Сочетание учета урожая и сопряженных анализов почвы опытных участков и растений, а также определение общего выноса питательных элементов и в расчете на единицу урожая позволяют установить зависимость между агрохимическими показателями почвы и эффективностью удобрений.

Ежегодно каждой зональной агрохимической лабораторией проводится 100 и больше полевых опытов. Одна из особенностей опытного дела в лабораториях состоит в том, что оптимальные варианты опытов оперативно внедряются в производство.

Специалисты агрохимлабораторий проводят наряду с мелкоделяночными полевыми опытами производственные опыты в колхозах и совхозах по выявлению эффективности удобрений и предложенных лабораториями рекомендаций. Полученная на основе опытов научно-производственная информация используется для разработки рациональных систем удобрения в конкретных условиях производства.

Зональные агрохимические лаборатории определяют потребность и планируют наиболее рациональное распределение удобрений и химических мелиорантов в зоне своей деятельности. В их обязанности входят массовые анализы местных удобрений, заготавливаемых в хозяйствах, контроль за качеством поставленных промышленностью удобрений и других средств химизации. Лаборатории участвуют в разработке мероприятий по наиболее эффективному использованию местных удобрений, осуществляют контроль за хранением и правильным использованием минеральных удобрений, а также за качеством работ по известкованию кислых и гипсованию солонцовых почв.

Зональные агрохимические лаборатории осуществляют методическое руководство работой агрохимических лабораторий колхозов и совхозов, участвуют в организации и проведении мероприятий по

повышению квалификации работников агрохимслужбы, пропагандируют агрохимические знания в колхозах и совхозах.

Большую работу зональные лаборатории проводят по оценке качества урожая в связи с химизацией, по анализу кормов.

Важнейшая задача зональных агрохимических лабораторий — разработка научно обоснованных рекомендаций по наиболее эффективному использованию удобрений и других средств химизации в колхозах и совхозах.

Научно-методическое руководство работой государственной агрохимической службы осуществляет Главное управление химизации сельского хозяйства МСХ СССР и Всесоюзная академия сельскохозяйственных наук имени В. И. Ленина.

Для координации и разработки методики исследований по агрохимическому обслуживанию сельского хозяйства, обобщения результатов и контроля за работой зональных агрохимических лабораторий при Главном управлении химизации создан Центральный институт агрохимического обслуживания сельского хозяйства (ЦИНАО) с филиалами во всех почвенно-климатических зонах. Он осуществляет научное и методическое руководство работой зональных агрохимических лабораторий, контроль за методами и качеством проводимых анализов, испытание и внедрение типовых методов анализа почв, растений, удобрений и кормов.

Совместно с ВИУА Центральный институт агрохимического обслуживания осуществляет методическое руководство постановкой полевых и производственных опытов, проводимых зональными лабораториями, обобщает результаты исследований по почвенно-климатическим зонам и представляет их Министерству сельского хозяйства СССР.

Большое значение для успешной работы агрохимической службы имеют районные пункты зональных лабораторий во всех зонах интенсивного применения удобрений.

Важным звеном в системе агрохимслужбы являются также лаборатории, имеющиеся в некоторых передовых колхозах и совхозах. Они оказывают конкретную помощь своим хозяйствам в текущем контроле за изменением почвенного плодородия, за накоплением, хранением и рациональным использованием удобрений. Работники этих лабораторий принимают участие в полевых и производственных опытах с удобрениями непосредственно в хозяйствах с целью установления необходимых видов удобрений для отдельных полей и культур севооборотов, выявления лучших форм, оптимальных доз и соотношений удобрений в конкретных условиях производства, организуют учет хозяйственной эффективности удобрений.

Деятельность государственной агрохимической службы в прошедшем десятилетии была подчинена главной задаче — обеспечению более эффективного использования удобрений, средств химической мелиорации почв и кормов в животноводстве.

Выполняя эту задачу, зональные агрохимические лаборатории провели агрохимическое обследование почв на площади более 360 млн.

га, сделали около 170 млн. почвенных анализов на кислотность, содержание доступных форм фосфора, калия, микроэлементов.

Полученные данные используются для определения потребности и распределения фондов минеральных удобрений, поставляемых сельскому хозяйству, для разработки рекомендаций по их наиболее эффективному применению.

Использование удобрений по рекомендациям агрохимической службы в сочетании с передовой агротехникой и другими мероприятиями позволяет повысить их действие и получать от них максимальный экономический эффект. Производственными опытами показано, что эффективность удобрений, применявшихся по рекомендациям агрохимической службы, на 20—30% выше, чем при обычной практике внесения их в хозяйстве.

Следует, однако, отметить, что резервы повышения эффективности применения удобрений использованы еще недостаточно. Поэтому зональные агрохимические лаборатории должны укреплять свои связи с колхозами и совхозами, разрабатывать более совершенные рекомендации по применению удобрений, осуществлять более действенный контроль за правильным их использованием.

Дальнейшее совершенствование деятельности государственной агрохимической службы позволит привести в действие дополнительные резервы улучшения использования удобрений, других средств химизации и повысить на этой основе эффективность сельскохозяйственного производства.

СИСТЕМА АГРОХИМИЧЕСКОГО ОБСЛУЖИВАНИЯ СЕЛЬСКОГО ХОЗЯЙСТВА

Важнейшей составной частью системы агрохимического обслуживания колхозов и совхозов является производственная база химизации. В состав ее входят подразделения, которые непосредственно занимаются выполнением работ по применению удобрений, химических мелиорантов и средств защиты растений, начиная от приемки их от поставщиков и кончая внесением в почву.

К таким подразделениям относятся: районные и межрайонные агрохимические центры, агрохимические пункты и механизированные отряды плодородия колхозов и совхозов, специализированные подразделения «Сельхозтехники», а также сельскохозяйственной авиации и станций защиты растений. Большие объемы работ по химизации продолжают выполнять также производственные бригады и отделения в колхозах и совхозах.

Множественность организационных форм производственного агрохимического обслуживания, существующая на современном этапе развития сельского хозяйства, не случайна. Она обусловливается большими различиями в природных и экономических условиях сельскохозяйственного производства, а также является следствием совершенствования организации агрохимического обслуживания, перехода на путь специализации и концентрации работ по химизации производства в колхозах и совхозах.

Быстрый рост производства и поставок сельскому хозяйству удобрений, химических мелиорантов и средств защиты растений, необходимость значительного улучшения их использования и повышения на этой основе эффективности сельскохозяйственного производства настоятельно требуют совершенствования организации агрохимического обслуживания колхозов и совхозов.

В сельском хозяйстве страны в последние годы идет активный процесс становления системы специализированного агрохимического обслуживания производства. Начало ему было положено созданием в колхозах и совхозах отрядов плодородия.

Механизированный отряд плодородия — это коллектив работников, вооруженных современной техникой и другими средствами производства для выполнения работ по рациональному использованию органических и минеральных удобрений, химических мелиорантов и средств защиты растений.

Отряды плодородия — самостоятельные внутрихозяйственные, а иногда и межхозяйственные подразделения. Основными принципами их организации являются: постоянство состава работников, специализация и разделение труда, закрепление техники и других средств производства на длительный период, самостоятельность и плановость в работе, материальная заинтересованность работников в конечных результатах производства.

Отряды плодородия бывают постоянные, действующие круглый год, и сезонные, создаваемые на период наибольшего напряжения в работах.

Постоянные отряды создают обычно в крупных колхозах и совхозах с высоким уровнем применения средств химизации. Они выполняют основной объем работ по удобрению полей и химической защите растений. Такая организация труда может быть названа централизованной, так как все необходимые силы и средства концентрируются в специализированном отряде.

Сезонные отряды создают в хозяйствах с менее высоким уровнем применения удобрений и средств защиты растений. Они выполняют в основном наиболее трудоемкие работы, оказывая необходимую помощь производственным бригадам и другим подразделениям в деле химизации земледелия. Такая форма организации труда может быть названа переходной от децентрализованной к централизованной. В практике нередко бывает так, что сначала создаются сезонные отряды, а затем, по мере укрепления кадрами механизаторов и необходимой техникой, они превращаются в постоянно действующие.

Децентрализованная организация труда на работах по химизации земледелия сохраняется еще в колхозах и совхозах с относительно низким уровнем применения удобрений и средств защиты растений, где бригады и отделения сами справляются со всеми работами.

Концентрация необходимых сил и средств в отрядах плодородия, специализация на выполпении работ по рациональному использованию удобрений, химических мелиорантов и средств защиты ра-

стений дают свои положительные результаты. Отрядная организация обеспечивает улучшение использования всех основных факторов производства: удобрений и средств защиты растений, техники и рабочей силы.

Например, использование техники и рабочей силы улучшается на 20—50%, урожайность сельскохозяйственных культур повышается на 15—50%. Себестоимость производства продукции растениеводства на этой основе снижается на 10—20%.

Достаточно крупные и хорошо организованные отряды плодородия, например, в совхозах «Зеленоградский», «Холмогорка» (Московская обл.) добиваются еще более высоких показателей в работе.

Агрохимические пункты. Крупные колхозы и совхозы на базе отрядов плодородия создают пункты и центры химизации, имеющие необходимое складское хозяйство, тукосмесительные установки и другое оборудование, взлетно-посадочные площадки с твердым покрытием для сельскохозяйственной авиации и мастерские технического обслуживания. В таких пунктах и центрах создаются более благоприятные условия для улучшения использования средств химизации и повышения их эффективности.

В качестве примера можно привести результаты деятельности специализированного пункта химизации в колхозе «Днепр» (Черкасская область Украинской ССР). На пункте работают заведующий, агрохимик, механик, бухгалтер и десять трактористов-машинистов широкого профиля. В наиболее напряженные периоды работ в помощь данному коллективу выделяют еще трех подсобных рабочих для приготовления растворов пестицидов и растаривания минеральных удобрений.

Благодаря концентрации необходимых средств производства на агрохимическом пункте и специализации работников на выполнении работ по удобрению полей и защите растений достигнуты немалые результаты. Использование техники и рабочей силы в 1974 г. улучшилось по сравнению с 1972 г. на 30%. Заготовка органических удобрений в 1971—1974 гг. возросла в 1,5 раза по сравнению с 1966—1970 гг., что дало возможность увеличить внесение их с 7,2 до 10,6 т на 1 га пашни.

Все работы по применению органических, минеральных удобрений, а также по химпческой защите растений выполняются сидами пункта химизации. В результате себестоимость этих работ в 1974 г. спизилась в 1,5—2 раза по сравнению с 1972 г. За счет этого колхоз только в 1974 г. сэкономил 55 тыс. руб. В этом же году каждый килограмм питательных веществ туков дал прибавку урожая зерна 6,2 кг, в том числе озимой пшепицы 7,3 кг. Урожайность зерновых увеличилась за этот период с 33,8 до 44 ц. Каждый рубль дополнительных затрат на применение удобрений дал 2,07 руб. чистого дохода. Агрохимические пункты успешно работают во многих хозяйствах.

Подразделения «Сельхозтехники». Большую помощь колхозам и совхозам в химизации оказывают механизированные отряды «Сель-

хозтехники». Во многих областях, краях и автономных республиках созданы специализированные отделения по производственному агрохимическому обслуживанию. Они берут на себя основной объем работ по транспортировке торфа, известкованию кислых почв, внесению удобрений, защите растений.

Специализированные подразделения «Сельхозтехники» с каждым годом наращивают объемы услуг колхозам и совхозам, оказывая большое влияние на развитие химизации сельского хозяйства.

В ряде областей создаются межхозяйственные организации по агрохимическому обслуживанию сельскохозяйственного производства. Например, Белгородское областное объединение координирует деятельность 18 районных межхозяйственных объединений, которые обслуживают 237 колхозов и 32 совхоза.

Научно-производственные агрохимические объединения и районные агрохимические центры. В последние годы появляются новые формы организации специализированного агрохимического обслуживания колхозов и совхозов в областях и районах — научно-производственные агрохимические объединения и районные агрохимические центры, не входящие в состав областных объединений «Сельхозтехники». Одно из первых таких объединений «Научно-производственное Мособлагрохимобъединение» с сетью районных и межрайонных агрохимических центров было создано в 1974 г. в Московской области.

Основная цель объединения — более эффективное использование минеральных и органических удобрений, химических средств защиты растений и совершенствование агрохимического обслуживания совхозов, колхозов и других сельскохозяйственных предприятий.

Главные задачи Мособлагрохимобъединения следующие:

руководство районными (межрайонными) агрохимическими центрами и областной станцией защиты растений;

агрохимическое обслуживание совхозов, колхозов и других сельскохозяйственных предприятий;

составление для совхозов, колхозов и других сельскохозяйственных предприятий проектно-сметной документации по рациональному использованию средств химизации;

планирование и распределение по согласованию с сельскохозяйственными органами минеральных удобрений, известковых материалов, кормовых фосфатов и микроэлементов, техники по подготовке, хранению и использованию средств химизации по агрохимическим центрам, совхозам, колхозам и другим сельскохозяйственным предприятиям;

поставка и организация хранения минеральных удобрений и других химических средств, приготовление смесей минеральных удобрений, известкование кислых почв, транспортировка и внесение в почву минеральных и органических удобрений, выполнение работ по химической защите растений от вредителей, болезней и сорняков;

внедрение в сельскохозяйственное производство достижений науки и передового опыта;

осуществление в подведомственных предприятиях и организациях капитального строительства, финансирование агрохимических центров и распределение материально-технических фондов.

В Московской области 39 административных районов, в которых насчитывается 408 совхозов, колхозов и других сельскохозяйственных предприятий. Для обслуживания этих хозяйств создаются 32 агрохимических центра, в том числе 25 районных, и 7 межрайонных. Средний размер районного (межрайонного) агрохимцентра характеризуется следующими показателями:

Число обслуживаемых козяйств 13 Площадь сельскохозяйственных угодий . 55 тыс. га
в том числе пашни » »
Работников — всего
в т. ч.:
рабочие
ИТР 41 »
Количество техники:
тракторов
автомобилей 37
сельскохозяйственных машин 56
автомобильных и тракторных прице-
пов 73

Такие агрохимцентры должны выполнять весь объем работ по известкованию почв, наземному обслуживанию сельскохозяйственной авиации, основному внесению минеральных удобрений, химической защите растений (включая использование авиации), на 80% вывозку торфа, на 43% приготовление компостов и внесение органических удобрений.

По расчетам специалистов, концентрация труда и средств в агрохимцентрах по сравнению с распределением их по каждому совхозу и колхозу позволит снизить себестоимость работ на 20%, капитальные вложения на 44,6% и приведенные затраты на 25,7%.

Такие же объединения созданы в Марийской АССР и в Костромской области.

Усиление внимания к новым формам спецподразделений по химизации, укрепление их высококвалифицированными кадрами механизаторов, специалистов и необходимой техникой, дальнейшее совершенствование организации их работы будут способствовать более успешному развитию химизации, повышению плодородия полей и эффективности сельскохозяйственного производства.

ПЛАНИРОВАНИЕ ПРИМЕНЕНИЯ УДОБРЕНИЙ

Эффективность удобрений в большой степени зависит от правильного планирования их применения— расчета потребности в удобрениях и расчета использования выделенных фондов удобрений.

Потребность в удобрениях определяют разными методами —

методом баланса, основанном на восполнении выноса питательных веществ урожаями сельскохозяйственных культур, методом коррелятивной зависимости между урожаями и количеством выносимых из почвы питательных веществ, методом аналогов, методом прямого определения потребности на основе данных научных учреждений и др. Потребность устанавливается дифференцированно с учетом природных и экономических условий.

Планирование распределения минеральных удобрений по зонам, районам и сельскохозяйственным культурам в стране производится с учетом следующих требований и особенностей.

Удобрения в первую очередь выделяют под такие культуры, районы возделывания которых ограничиваются почвенно-климатическими условиями или под которые туки выделяются целевым назначением. К таким культурам относятся хлопчатник, чай, сахарная свекла и др.

Удобрениями полностью обеспечиваются посевы, расположенные на мелиорируемых землях. Это требование обусловливается высокой экономической эффективностью удобрений и необходимостью быстрее окупить значительные затраты на мелиорацию.

Наиболее полно должны обеспечиваться удобрениями орошаемые культуры, а также культуры с коротким периодом интенсивного потребления питательных веществ, требовательные к повышенному содержанию их в доступной форме.

При распределении удобрений учитывают также, что наиболее высокая оплата их урожаем обеспечивается в дерново-подзолистой зоне и на выщелоченных черноземах, обеспеченных достаточным количеством влаги.

При обосновании планов распределения удобрений по зонам и районам страны широко используются экономико-математические методы и электронно-вычислительная техника.

Так, в ЦИНАО для обоснования оптимальных планов распределения фондов минеральных удобрений и определения потребности в них в масштабе страны и отдельных районов разработан специальный программный комплекс «Фонуд». В основе экономико-математической модели и алгоритма решения задачи лежат следующие исходные данные:

- 1. Исходя из нормативов, утвержденных МСХ СССР по согласованию с Госпланом СССР, по союзным республикам и экономическим районам устанавливаются затраты удобрений на единицу прибавки урожая и доля урожая сельскохозяйственных культур, которая может быть получена за счет минеральных удобрений. Произведение количества удобрений, обеспечивающего прирост единицы урожая, на количество продукции, получаемой за счет удобрений, дает норму удобрений. При планировании более высоких урожаев потребность в удобрениях возрастает.
- 2. При определении потребности и распределении удобрений по зонам и районам учитывается также содержание питательных веществ в почве.

3. Распределение удобрений производится с учетом окупаемости затрат на их применение. При этом прибавки урожая от удобрений и затрат на их применение берутся по нормативным материалам.

Программный комплекс «Фонуд» позволяет осуществлять разработку оптимального плана распределения фондов минеральных удобрений в стране на предстоящий хозяйственный год и потребности сельского хозяйства в них на любой планируемый год.

В ЦИНАО разработан также новый способ планирования потребности и использования удобрений непосредственно в хозяйстве на основе специальной программы «Радоз» и автоматизированной обработки материала электронно-вычислительными машинами. Сущность этого способа состоит в следующем.

В колхозе или совхозе заполняют специальную карточку, где указывают следующие исходные данные: номер севооборота, поля и участка; площадь, тип и механический состав почвы; группа почвы по кислотности, содержанию подвижного фосфора и обменного калия; эродированность; предшественник; удобрение предшественника; планируемая культура, сорт и планируемый урожай. Заполненную карточку направляют в электронно-вычислительный центр, который быстро обрабатывает ее и выдает готовое решение с обоснованным ответом на поставленные вопросы.

План применения удобрений в хозяйстве, рассчитанный по программе «Радоз», содержит такие необходимые данные, как дозы внесения органических и минеральных удобрений под каждую культуру для получения запланированных урожаев; общее количество, сроки, способы внесения удобрений и др.

Такой план служит основой производственного задания хозрасчетным бригадам, отрядам плодородия, агрохимическим пунктам и центрам.

В случае необходимости расчет потребности хозяйства в удобрениях для получения запланированных урожаев может быть сделан традиционными способами, изложенными выше (стр. 151—153).

ОРГАНИЗАЦИЯ РАБОЧИХ ПРОЦЕССОВ

Принцины организации рабочих процессов. Применение удобрений, химических мелиорантов и средств защиты растений включает выполнение отдельных рабочих процессов по заготовке, хранению, подготовке к внесению, погрузке, транспортировке, непосредственному внесению в почву и заделке. От того, как организован каждый рабочий процесс, зависят использование рабочей силы и техники, сроки и качество работ, конечные результаты производства. Для достижения лучших показателей необходимо обеспечить более рациональную организацию рабочих процессов, в которую входят: подготовка рабочего места, подбор людей, комплектование агрегата, расстановка людей, техники и других средств производства по местам работы в соответствии с ее особенностями, установление

порядка передвижения исполнителей и агрегатов, наиболее рационального режима работы, форм кооперации и разделения труда и др.

Рациональная организация рабочих процессов обеспечивается на основе соблюдения следующих важнейших ее принципов: непрерывности, ритмичности, пропорциональности и согласованности.

Непрерывность выражается в том, что трудовой процесс выполняется без каких-либо перерывов, кроме тех, которые обусловлены самой технологией или связаны с рациональным режимом труда и отдыха. На взаимосвязанных операциях, составляющих единый технологический процесс, например, на погрузке, транспортировке и внесении удобрений, непрерывность трудовых процессов находит свое выражение в поточности работы. Это ликвидирует лишние перевалки предметов труда, в данном случае удобрений, сводит до минимума потери рабочего времени, сокращает сроки выполнения работ и затраты на них.

Ритмичность рабочих процессов означает выполнение работы в едином темпе, что особенно важно при поточной организации работ. В количественном отношении ритм трудовых процессов выражается в равенстве часовой или сменной производительности на всех взаимосвязанных рабочих местах. Например, в комплексе работ на внесении удобрений одинаковой должна быть производительность погрузчика, обслуживаемых транспортных средств и разбрасывателей. При поточной организации ритм работы определяется по производительности главной машины, выполняющей наиболее ответственную операцию или процесс. В данном примере это будет разбрасыватель. Соблюдение принципа ритмичности достигается организацией равномерной работы каждого исполнителя на рабочем месте, подбором машин с равной производительностью, установлением нужного количества машин и исполнителей.

Пропорциональность рабочих процессов выражается в установлении строгих количественных соотношений между манинами и людьми, занятыми на различных операциях единого технологического процесса. Например, на внесении удобрений должно быть определенное соотношение между количеством разбрасывателей, погрузчиков и транспортных агрегатов. Если погрузчик может погрузить за смену 150 т органических удобрений, а выработка разбрасывателя 50 т, то соотношение между ними должно быть 1:3 и т. д. Соответствующей будет и потребность в рабочей силе.

Правильные пропорции между взаимосвязанными агрегатами обеспечивают непрерывность, ритмичность рабочих процессов и высокую производительность труда.

Согласованность означает выполнение каждой операции в данном рабочем процессе или ряда связанных между собой рабочих процессов в строго определенное время. Например, разбрасыватель может начать работу в назначенное время, если своевременно подготовлено поле, подвезены удобрения и т. д. Несвоевременно подготовлено поле, подвезены удобрения и т. д.

временное выполнение отдельных операций и рабочих процессов ведет к нарушению единства технологического процесса, простоям, снижению выработки и производительности труда.

Для достижения лучших результатов важное значение имеет соблюдение и других принципов рациональной организации рабочих процессов.

Большинство рабочих процессов связано с перемещением людей, средств и предметов труда. Для этого требуются большие затраты времени. Чтобы сократить их, важно соблюдать принцип минимальных перемещений или кратчайших расстояний. Это достигается рациональной планировкой рабочих мест, выбором более целесообразных маршрутов и схем движения людей, машин и предметов труда.

Немаловажное значение имеет соблюдение параллельности процессов, то есть одновременного выполнения нескольких однородных или разнородных взаимосвязанных операций и рабочих процессов. Очень важен также принцип оптимальной специализации труда. Специализация на выполнении одного или нескольких однородных рабочих процессов способствует росту профессионального мастерства, улучшению использования техники и повышению производительности труда. Однако узкая специализация возможна только при условии достаточного фронта работ, в противном случае необходима универсализация. Совмещение различных трудовых функций может значительно увеличить полезную занятость работников. Необходимо, кроме того, соблюдение таких припципов рациональной организации рабочих процессов, как стандартизация предметов труда, материальная заинтересованность, нормальные санитарногигиенические условия труда и др.

Рассмотрим конкретные примеры организации основных рабочих процессов по применению удобрений.

Организация работ на складе минеральных удобрений. Работы по применению минеральных удобрений в хозяйстве начинаются с приемки их от поставщиков и закладки на хранение в типовых или приспособленных складах (табл. 77).

Таблица 77 Общая характеристика типовых складов для хранения минеральных удобрений

Типовые проекты складов	Общал ем- кость склада (т)	В том числе ядохимика- тов (т)	Размеры склада в плане (м)	Высота склада (м)	Сметнал стоимость (тыс. руб.)
705—1—6 705—1—5 705—1—7, тип II 705—1—8, тип II 705—1—9, тип II	400 800 1200 1600 2000	40 40 50 60 80	12×30 12×48 24×30 24×36 24×48	6 6 6 6	35,3 47,7 58,0 64,5 79,1

В таких складах предусматривается одновременное хранение 8—10 видов как затаренных, так и незатаренных удобрений. Затаренные удобрения доставляются в хозяйства на поддонах или в пакетах, хранятся в штабелях высотой до 3,5 м. Незатаренные удобрения доставляются на склад самосвалами и выгружаются в отсеки.

Раздельное хранение их в штабелях высотой 3 м достигается с помощью сборно-разборных деревянных перегородок.

Механизация погрузочно-разгрузочных работ на складе осуществляется машинами и механизмами, имеющимися в хозяйстве (автопогрузчики, бульдозеры, погрузчики типа ПМГ-0,2 и др.). В крупных складах применяется более совершенная техника.

В период внесения удобрений необходимо измельчение слежавшихся и смешивание простых (односторонних) туков. Для выполнения этих работ склады оснащаются специальной техникой.

Для измельчения слежавшихся удобрений используют машины типа ИСУ-4 с приводом от трактора или электромотора, дробилки типа Д-052 в агрегате с ленточным конвейером Т-391.

Для приготовления тукосмесей используется смеситель-загрузчик удобрений СЗУ-20 в комплексе с фронтальным погрузчиком ПФ-0.75.

Практика показывает, что тукосмешение дает большой экономический эффект (табл. 78). Приготовление тукосмесей агрегатом СЗУ-20 и внесение их разбрасывателем 1-РМГ-4 обеспечивает повышение производительности труда на этих работах на 24,2-71,2%, снижение себестоимости работ на 17,4-39,3%, экономию капитальных вложений на 13,7-33,7% и снижение приведенных затрат на 16,7-38,3%, в зависимости от состава тукосмесей.

Таблица 78 Экономическая эффективность применения тукосмесей (в расчете на 1 т)

	Раздельное внесение	Приготовление и внесе- ние тукосмесей	
Показатель	просты х туков	двойных	тройных
Затраты труда (челчас.) Рост производительности труда (%) Себестоимость работ (руб.) Спижение себестоимости (%) Капитальные вложения (руб.) Экономия капиталовложений (%) Приведенные затраты (руб.) Снижение приведенных затрат (%)	1,13 — 4—76 — 5—19 — 5—80 —	0,91 24,2 3—93 17,4 4—48 13,7 4—83 16,7	0,66 71,2 2—89 39,3 3—44 33,7 3—58 38,3

Примечание. Доза внесения туков — 6 ц на 1 га; расстояние от склада до поля 5 км; приготовление тукосмесей на СЗУ-20; внесение туков разбрасывателем 1-РМГ-4.

На крупных складах применяется более производительная тукосмесительная установка УТС-30 в агрегате с ленточным транспортером ПКС-80.

Организация внесения минеральных удобрений. Минеральные удобрения вносят в сроки, установленные агрономом хозяйства. Нормы внесения берут из плана применения удобрений. Удобрения необходимо вносить равномерно по всей площади поля. Неравномерность внесения для туковых сеялок не должна превышать ±15%, а для разбрасывателей ±25%. Влажность удобрений, подготовленных для внесения, должна обеспечивать нормальную работу дозирующих высевающих аппаратов и соответствовать стандарту. Разрывы между смежными проходами машин не допускаются. Допустимое перекрытие в стыковых междурядьях 5% от ширины захвата агрегата.

Процесс внесения минеральных удобрений включает погрузку удобрений на складе в транспортные средства, перевозку их к местам внесения и непосредственное внесение в почву. Эти работы выполняются по различным технологическим схемам — прямоточной, с перегрузкой и перевалочной — в зависимости от расстояния перевозки, наличия техники и норм внесения удобрений.

При прямоточной схеме внесения удобрения на складе загружаются погрузчиком или вручную навалом непосредственно в разбрасыватели, а затем транспортируются этими же машинами

Таблица 79
Экономические показатели технологических схем погрузки, транспортировки и внесения минеральных удобрений (в расчете на 1 га)

Расстояние транспортиров-ки (км)	Затраты труда (челчас.)	Себестоимость (руб.)	Капитальные вложения (руб.)	Приведенные затраты (руб.)	
	πı	эямоточная схем	51 0		
1 2 3 4 5 7 10	0,32 0,36 0,41 0,45 0,50 0,60 0,73	1—69 1—97 2—19 2—48 2—74 3—25 4—03	1—88 2—14 2—42 2—70 2—98 3—55 4—41	2—16 2—51 2—79 3—16 3—49 4—14 5—13	
Перевалочная схема					
1 2 3 4 5 7	0,36 0,38 0,40 0,43 0,45 0,45 0,49 0,56	1—92 2—00 2—08 2—16 2—24 2—40 2—64	1—93 2—01 2—10 2—19 2—27 2—47 2—70	2—40 2—50 2—61 2—71 2—81 3—01 3—32	

и вносится в почву. Способ с перегрузкой включает погрузку удобрений на складе навалом в перегружатели САЗ-2500 и загрузчики ЗСА-40, транспортировку к полю, перегрузку их в разбрасыватели и внесение в почву. При перевалочной схеме удобрения со склада перевозят к местам заправки, загружают в разбрасыватели и вносят в почву.

Применение наиболее целесообразной технологической схемы внесения удобрений в конкретных условиях дает лучшие экономические результаты (табл. 79). Расчет сделан при норме внесения удобрений 8 ц на 1 га, погрузке удобрений погрузчиком ПЭ-0,8, транспортировке автомашиной ЗИЛ-585, внесение удобрений в почву разбрасывателем 1-РМГ-4. Аналогичные расчеты могут быть произведены и для других условий производства.

Из таблицы 79 видно, что прямоточная схема работы в данных условиях экономически целесообразна при удаленности полей от склада до 2—3 км, а при норме внесения удобрений 5 ц на 1 га — до 4—5 км. Доставка и внесение удобрений одной машиной позволяют устранить простои, неизбежные при совместной работе транспортных средств и разбрасывателей; отпадает также необходимость повторной погрузки удобрений в разбрасыватели после подвоза. Однако с увеличением удаленности полей от склада прямоточная схема становится менее выгодной. В этом случае целесообразно применять способ работы с перегрузкой (если в отряде имеются перегружатели или загрузчики) или перевалочный способ.

В связи с этим необходимо знать, какими машинами выгоднее транспортировать удобрения. При больших расстояниях экономически эффективно применять в первую очередь автосамосвалы типа ЗИЛ-585. Эффективность использования тракторов на транспортировке удобрений может быть повышена при агрегатировании с двумя прицепами.

Высокопроизводительная работа агрегатов на внесении удобрений во многом зависит от подготовки полей к работе. Поле должно быть подготовлено до начала работы агрегатов Подготовка включает отбивку поворотных полос или контрольных линий для включения рабочих органов, провешивание линии первого прохода агрегата, разбивку поля на загоны. Если для поворотов можно выезжать за пределы поля, поворотные полосы не требуются. Также не требуется линия первого прохода агрегата, если боковая граница поля прямолинейна и трактористы достаточно опытны. В случае применения перевалочного способа работы необходимо установить и отметить места загрузки агрегатов удобрениями.

Способы движения выбирают с учетом размеров полей и технических характеристик агрегатов. Основным способом является челночный. На полях с малой длиной гона может быть применен способ движения перекрытием; он рекомендуется, когда нет возможности выезжать за пределы поля.

Разметка поля при внесении минеральных удобрений челночным способом показана на рисунке 18. Ширина поворотных полос для

Рис. 18. Схема разметки поля и движения агрегата при внесении минеральных удобрений челночном способом.

разбрасывателей РУ-4-10, РУМ-3 и 1-РМГ-4 составляет 16 м, то есть два прохода агрегата. Линия первого прохода агрегата должна отстоять от внутренних участков боковой границы поля расстоянии, равном половине захвата агрегата. Контрольные линии отмечают вешками или следом колеса трактора.

Расположение мест заправки удобрениями зависит от длины рабочего хода агрегата между заправками — пути разбрасывания. Если он значительно больше длины гона, места заправки располагают на одной из поворотных полос. При больших длинах гона и нормах внесения удобрений целесообразно организовать места заправки с двух сторон поля. Если путь разбрасывания примерно равен длине гона, поле по длине гона разбивается пополам. При этом агрегаты будут доходить до середины поля и возвращаться обратно для заправки на одной из поворотных полос. После обработки первой половины поля погрузчик переезжает на вторую поворотную полосу, где производится заправка для обработки второй половины поля.

Путь разбрасывания (длину рабочего хода агрегата между заправками) определяют по формуле:

$$\mathcal{I}_p = \frac{r \cdot 10\,000}{H \cdot III},\tag{1}$$

где \mathcal{A}_p — путь разбрасывания (м); Γ — грузоподъемность разбрасывателя (кг);

Н — норма внесения удобрений (кг/га);

Ш — ширина захвата агрегата (м).

Расстояние между местами заправки агрегатов удобрениями (Р) устанавливают по формуле:

$$P = \frac{\mathcal{I}_p}{\mathcal{I}_z} I I I = n \cdot I I I, \qquad (2)$$

где \mathcal{I}_{*} — длина гона (м);

н — количество проходов агрегата между очередными заправками (принимают целым числом; при организации заправки с одной стороны поля оно должно быть четным числом).

Количество удобрений, которое необходимо иметь на местах ваправки (K), определяют по формуле:

$$K = \frac{A_c \cdot n \cdot III \cdot II}{10.000} . \tag{3}$$

Если поля имеют неправильную конфигурацию и переменную длину гона, применяют способы работы прямоточный или с перегрузкой. Поля неправильной конфигурации больших размеров разбивают на отдельные, более правильные по форме участки.

Порядок работы агрегатов, когда длина рабочего хода между заправками зна-

Рис. 19. Схема движения агрегата при внесении минеральных удобрений способом перекрытия.

чительно больше длины гона, принимается согласно схеме (рис. 18). При этом агрегаты движутся вдоль боковой стороны поля, делая холостые повороты на концах гона. Если длина поля примерно равна длине рабочего хода агрегата между заправками, движение агрегатов осуществляется по той же схеме или с поворотами у контрольной линии посредине поля, при этом обрабатывается сначала одна половина поля, затем другая. На полях с малой длиной гона, когда применяется способ работы перекрытием, агрегаты движутся по схеме, представленной на рисунке 19.

Трактористы-машинисты должны соблюдать заданный режим работы, следить за прямолинейностью движения агрегатов, качеством рассева удобрений по полю, перекрытием ширины разбрасывания. При ухудшении качества работы, а также нарушении требований техники безопасности агрегаты останавливают для устранения неполадок. По окончании разбрасывания минеральных удобрений на основном поле проводится обработка поворотных полос.

Организация внесения органических удобрений. Поверхностное внесение органических удобрений с последующей их заделкой при вспашке, дисковании и бороновании производят под зябь, пар, а также весной под пропашные культуры. Удобрения необходимо полностью заделывать в почву. При заделке они должны хорошо перемешиваться с почвой. Время между разбрасыванием удобрений и заделкой должно быть минимальным. Норма внесения органических удобрений, как и минеральных, устанавливается на основе плана применения удобрений в хозяйстве; допустимо отклонение, не превышающее 10%. Удобрения равномерно разбрасываются по поверхности почвы. Неравномерность распределения их по ширине захвата агрегата ограничена ±25%. Разрыв между смежными проходами разбрасывателя не допускается. В удобрениях не должно быть никаких посторонних включений.

На внесении органических удобрений в зависимости от условий работы и наличия техники могут применяться две технологические схемы работы агрегатов: прямоточная и перевалочная. Прямоточная схема предопределяет транспортировку и разбрасывание удобрений разбрасывателем. Перевалочная схема включает транспортировку

удобрений на поля транспортными средствами, выгрузку их в бурты, погрузку в разбрасыватели и внесение. Выбор технологии внесения органических удобрений зависит от конкретных условий (табл. 80).

Таблица 8 Экономические показатели технологических схем погрузки, транспортировки и разбрасывания органических удобрений (в расчете на 1 т)

Расстояние транс-	Затраты труда	Себестоимость	Капитальные	Приведенные за-		
портировни (км)	(челчас.)	(руб.)	вложения (руб.)	траты (руб.)		
Прямоточная схема						
1	0,13	0—54	0—46	0—66		
2	0,18	0—75	0—61	0—90		
3	0,23	0—95	0—74	1—14		
4	0,28	1—17	0—89	1—39		
5	0,33	1—36	1—03	1—62		
Перевалочная схема						
1	0,20	0—91	0—74	1—10		
2	0,22	1—00	0—82	1—21		
3	0,24	1—09	0—91	1—32		
4	0,27	1—18	1—00	1—43		
5	0,29	1—28	1—08	1—55		

Примечание. Норма внесения удобрений 40 т на 1 га; на погрузке использустся погрузчик ПЭ-0,8; транспортировка автосамосрадами: виссение разбрасывателем 1-ПТУ-4.

Из таблицы 80 видно, что при расстоянии перевозки до 4 км внесение удобрений выгодно производить прямоточным способом, а свыше 4 км — перевалочным. Транспортировать органические удобрения, как и минеральные, следует автосамосвалами и тракторами в агрегате с двумя прицепами.

Важное условие высокопроизводительного использования агрегатов на этих работах — предварительная подготовка полей: разметка и обозначение мест укладки буртов, отбивка поворотных полос, разбивка полей на загоны.

Необходимые данные для разметки нолей устанавливают, исходя из технологической схемы внесения удобрений, технических характеристик разбрасывателей и рациональных схем их работы.

Способы движения агрегатов выбирают с учетом принятой технологической схемы работы и нормы внесения удобрений.

Рассмотрим организацию внесения органических удобрений перевалочным способом, с укладкой в бурты на поле п последующим разбрасыванием. Порядок движения агрегатов при таком способе зависит в основном от пормы внесения удобрений (рис 20).

Способ работы агрегата в данном случае будет следующий. Полностью загруженный разбрасыватель движется от бурта вдоль гона

до момента разбрасывания половины емкости кузова, затем делает поворот и движется в обратном направлении к бурту, разбрасывая оставшиеся удобрения. У бурта разбрасыватель снова загружают, и цикл работы повторяется.

Бурты укладывают в поле рядами обычно в поперечном направлении. Расстояния между рядами буртов, то есть

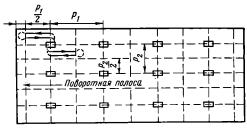


Рис. 20. Схема разметки поля и движения агрегата при внесении органических удобрений с нормой до 40 т на 1 га.

по ходу агрегатов, определяют по формуле:

$$P_{i} = \frac{r \cdot 10\ 000}{H \cdot m_{i}},\tag{4}$$

где P_1 — расстояние между рядами буртов (м);

 Γ — грузоподъемность разбрасывателя (т);

Н — норма внесения удобрений (т на 1 га);

Ш — ширина захвата разбрасывателя (м).

Первый ряд буртов располагают, отступив от края поля на расстояние половины длины рабочего хода разбрасывателя, остальные — на расстояниях между рядами, равных длине рабочего хода. На небольших нолях возможно расположение буртов в один ряд посредине поля или на краю.

Расстояния между буртами в ряду устанавливают по формуле:

$$P_{2} = \frac{B \cdot III}{r}, \tag{5}$$

где P_2 — расстояния между буртами в ряду (м);

B — масса одного бурта (т).

Масса буртов при нормах внесения органических удобрений до 40 т на 1 га может быть установлена по формуле:

$$B = \frac{P_2 \cdot \Gamma}{III} \,. \tag{6}$$

В тех случаях, когда норма внесения органических удобрений больше 40 т на 1 га, принимается иная схема работы агрегата: загруженный разбрасыватель движется от бурта вдоль гона до полного опорожнения кузова, затем возвращается холостым ходом к бурту для заправки. В дальнейшем цикл работы повторяется. Разметку поля и расстановку буртов производят согласно схеме (рис. 21).

Массу буртов при нормах впесения свыше 40 т на 1 га рассчитывают по формуле:

$$B = \frac{2 \cdot P_2 \cdot \Gamma}{III} \,. \tag{7}$$

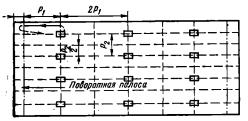


Рис. 21. Схема разметки поля и движения агрегата при внесении органических удобрений с нормой свыше 40 т на 1 га.

При внесении органических удобрений прямоточным способом необходимость в разметке мест укладки буртов отпадает. При этом агрегаты могут работать до полного опорожнения кузова, то есть на всю длину пути разбрасывания или до момента разбрасывания половины емкости кузова с поворотом и рабочим ходом в обратном

паправлении. Первый метод целесообразен при больших нормах внесения удобрений. Подготовка поля в таких случаях сводится к разбивке его по ширине на такие загоны, которые можно обработать в течение одной-двух смен. При нормах внесения удобрений до 40 т на 1 га поле разбивают также по длине на отрезки, равные половине пути разбрасывания.

В практике встречаются и другие способы организации внесения органических удобрений. Например, в совхозе «Зеленоградский» бурты закладывают часто не на поле, а за его пределами, по краям, чтобы избежать утрамбовки почвы у буртов. Поле разбивают пополам или на четыре участка. В первом случае каждую половину обрабатывает звено отряда плодородия, во втором — звено подразделяют на две группы. Каждая группа обрабатывает свой участок. Работа группами устраняет обезличку и позволяет лучше контролировать качество работы.

Порядок движения агрегатов при этом следующий. Первый загруженный разбрасыватель въезжает на участок, движется вдоль гона до полного опорожнения кузова, после чего возвращается к бурту для заправки. В то же время второй загруженный разбрасыватель продолжает рабочий ход первого агрегата также до полного опорожнения кузова, затем возвращается для заправки, а работу продолжает уже третий разбрасыватель. После этого цикл повторяется. Если пельзя продолжать путь разбрасывания предыдущего агрегата, последующий разбрасыватель может занять соседнюю полосу участка.

Контроль за качеством внесения органических удобрений осуществляют так же, как и при внесении минеральных удобрений.

УКАЗАТЕЛЬ ЛИТЕРАТУРЫ

- Прянишников Д. Н. Агрохимия. Избранные сочинения, т. 1. М., «Колос», 1965, 767 с.
- Агрохимия (Изд. 3), Под ред. Смирнова П. М. и Петербургского А. В. М., «Колос»,
- 1975, 512 с. Гуляки и И. В. Система применения удобрений. М., «Колос», 1970, 208 с. Ю д и н Ф. А. Методика агрохимических исследований. М., «Колос», 1971, 272 с. Радов А. С. и др. Практикум по агрохимии. М., «Колос», 1971, 375 с.
- Баранов Н. Й., Михайлов Н. И. Справочник по экономике химизации сельского хозяйства. М., «Колос», 1967, 215 с.
- Экономика использования удобрений. Под ред. Баранова И. Н. М., «Колос», 1074, 312 c.
- Артюшин А. М., Толстоусов П. П., Халилов А. Х. Минеральные удобрения и дозы их внесения. М., «Колос», 1967, 255 с. Справочник агрохимика. М., Россельхозиздат, 1976, 350 с.

Агрономическая химия, агрохимия 3, 4 Агроруды 84, 94 Агрохимическая служба в СССР 8, 10, **210—220** Агрохимическая картограмма 9, 56, 145, 146 Агрохимические свойства появы 34-47, 146, 155 Агрохимические пункты — центры научно-производственные объединения 10, 214—218 Агрохимическое обслуживание сельского хозяйства 8, 10, 214-218 Агрохимическая служба 8, 150, 210— 220 **Аз**от роль в питании растений 15, 21, 22, содержание и превращение в почве 36, 69 - 72Азотные удобрения нитратные (натриевая и кальциевая селитра) 73-75 амидные (мочевина) 81-82 аммиачные (жидкий аммиак, аммиачная вода, аммиакаты) 77—81 аммонийные (сульфат аммония, хлористый аммоний) 75—77 аммонийно-нитратное (аммиачная селитра) 79-80 Азотфиксация 7, 21, 50, 72-73, 154 Амиды 66, 67 Аминокислоты 14, 20, 23, 26, 65-68 Аммонификация 70 Антагонизм ионов 28, 50 Ассортимент минеральных удобрений в СССР 10, 64, 73, 85, 95, 208 Баланс элементов питания 153—155, 219 Балансовый метод проверки правильности доз и соотношения удобре-

Вегетационный метод 5, 8 Вещество удобрения действующее 64, 65, 84, 94

Биологический азот 7, 72, 154, 171, 187

Буферная способность почвы 45, 47

Взаимосвязь фотосиптеза и корневого питания 26 Внекорневое питание растений 21, 82 Вода 13, 14, 20, 34 Водород 15, 35, 36 Возврат питательных элементов в почву 6, 72, 84, 94, 153 Воздушное питание растений 5, 15, 20 Восстановление нитратов в растениях 26, 65, 66, 68 Вымывание нитратов 41, 71, 72, 157 Вынос элементов питания из почвы с урожаем 3, 17—20, 69, 84, 93, 148, 153, 161, 165, 167, 169, 172, 175, 179, 182, 187 Вытяжка из почвы 144, 146

Гигроскопичность удобрения 74, 76, 80. 81, 95

Гипс

влияние на почву 59, 60

— дозы, сроки и способы внесения 60 — применение в канестве удобрения

 применение в качестве удобрения 62, 86

Гилсование солонцов 59—61 Гумификация 39, 40 Гумусовые вещества в почве 38, 39

Денитрификация 30, 71, 72 Дозы удобрения:

— рекомендуемые 144, 149, 150

 методы установления 141—155, 200, 201, 216—220

Допосевное удобрение 105, 156

Дыхание корней и поглощение ионов ____ 20, 26

Емкость поглощения катионов почвой 43, 44

Железо 15, 35 Жидкие азотные удобрения 77—79 — сложные удобрения 101, 102 Жижа навозная 125, 126 Жиры 13, 108

Зеленое удобрение 132—134 Зола как удобрение 98, 99 Зольные элементы 6, 15, 16, 21 Зональные агрохимические лаборатории 8, 147, 211—213

ний 153

Белки 13, 14, 65, 67

Бор 15, 50, 104—106

Избирательное поглощение ионов растениями 27

Известкование кислых почв

 действие на почву и урожайность 48 - 52

 на эффективность удобрений 51, 52 — экономическая эффективность 58, 95 Известковые удобрения 53, 54 Пимобилизация азота в почве 39, 71· Ингибиторы нитрификации 72, 82, 184, 198

Калий — роль в питании растений 91 содержание в растениях 16, 93

 содержание и формы в почве 39, 93, 94

Калийные удобрения: сырые калийные соли н отходы промышленности (сильвинит, каинит, цементная

пыль, нефелиновые хвосты) 95 --- — промышленные (хлористый калий, сульфат калия, калимагнезия) 96 - 98

Кальций 28, 49—51

Картограммы 9, 56, 145, 146

Качество сельскохозяйственной продукции 3, 13, 15, 33, 155, 166, 173, 178, 188, 193, 198

Кислород 5, 15, 34

Кислотность почвы актуальная 45

гидролитическая 45, 46

— обменная 45

— потенциальная 45

 удобрения физиологическая 76, 80 Клетчатка 13, 14, 20 Классы почв 146, 147

Комплексные удобрения 99-102, 210 Компосты: торфяные 129

торфо-навозные 130

- торфо-жижевые 130

торфо-фекальные 130, 131

 компостирование с фосфоритной мукой 131

Корневая система растений 21, 23, 51 Корневое питание растений 5, 15, 21 Корневые волоски 22, 23

Корневые выделения 29, 30

Коэффициент использования действующего вещества удобрения 70, 87, 97, 121—122, 151, 152

Крахмал 13, 14, 20

Критический период в питании растепий 31, 32

Круговорот веществ в земледелии и применение удобрений 3, 72, 84, 94, 154

Лабораторные методы определения потребности почв в удобрениях 144, 146, 211

Легкогидролизуемый азот в почве 144 Лимоннорастворимые фосфаты 85 Локальное внесение удобрений 87, 156,

Люпины 132—134

Магний 15, 51, 81, 88 Магнийсодержащие удобрения 53, 95 Макроэлементы 15 Марганец 15, 65, 105 Медь 15, 65, 106 Мембраны 25 Местные удобрения 63 Метаболическое поглощение ионов кор-

невой системой 24

Методы агрохимических исследований 45, 144, 211—212 Микроорганизмы почвенные 28, 30, 49,

Микроэлементы 15, 16, 65, 104—109

Микроудобрения 16, 104—109, 193 Минерализация органического вещества почвы 39, 50, 70

Минеральная часть почвы 36, 37 Минеральные удобрения

— азотные 63, 65, 73—82

— фосфорные 63, 82, 84—91— калийные 63, 91, 94—99

комплексные 64, 99

— сложные 64, 99, 100—102 смешанные 100, 102—104

Молибден 15, 36, 49, 65, 68, 107—108, 193

Навоз подстилочный 110—113

— жидкий 114

— свежий 119—120

полуперепревший 119, 120

— перепревший 120

хранение 115—117, 120

- действие на почву и растения 121, 122

 эффективность и особенности применения 12, 122-124 Навозная жижа 125, 126, 130 Навозохранилище 117, 118 Натрий 15, 75, 95 Нитрагин 133 Нитрификация 49, 70

Нитрофосы и нитрофоски 100, 101 Нитроаммофосы 101

Обменное поглощение катионов в почве

Оптимальная реакция среды для растений 48

Оптимальные соотношения элементов питания и дозы удобрений 148 Определение потребности почв в известковании и доз извести 54-56

Опыты с удобрениями 5, 8, 147 Организация рабочих процессов по применению удобрений 220—230 Органические кислоты 14, 26, 29, 66 Органическое вещество почвы 30, 37-39 Органические удобрения

— навоз 110—124

навозная жижа 124—126, 130

— птичий помет 126

— торф 127—131 — компосты 129

Особенности питания отдельных культур 39—40, 161—193

Особенности удобрения сельскохозяйственных культур и размещение удобрений в севообороте 161—185

Основное удобрение 156, 157 Отношение растений к условиям питания в разные периоды роста 30, 161, 165, 167, 169, 172, 176, 179, 183 Отряды плодородия 215

Пассивное поглощение питательных веществ растениями 23

Переаминирование 66 Перегной 117, 119

Передвижение веществ в растениях 26 Переносчики ионов в клетке 25

Период максимального потребления элементов питания 31, 172

Периодичность поступления питательных веществ в растения 30

Пиноцитоз 25

Питание растений воздушное 5, 20

— — корневое 5, 21

— некорневое 21

Питательные вещества в почвах — содержание и доступность растениям 39, 40, 69, 84, 93, 144—147

Питательный раствор уравновешенный 28

Плазмодесмы 26

Планирование применения удобрений 218—220

Планируемый урожай 142, 147, 155, 219 Поглотительная способность почвы

— виды 40—42

биологическая 40, 71

механическая 41

физическая 41

химическая 41, 42, 86

физико-химическая 42, 43

Почвенный поглощающий комплекс 42 Поглощение питательных веществ растениями 20-28

 — — влияние условий внешней среды 28-30

 — пассивное (пеметаболическое) 23-24

 активное или метаболическое 24

Подкормка растений 159—160

Подразделения «Сельхозтехника» химизации 216, 217

Подстилка 111—113

Показатели экономической эффективности применения удобрений 194—

Полевой опыт 8, 147, 148, 155, 211, 212 Полифосфаты аммония 101

Последействие удобрений 122, 123, 139,

Поставка удобрений сельскому хозяйству в СССР 10

Поступление питательных веществ в корень 20

Потери питательных веществ из почвы 3, 71, 72

Почва — состав 34—39

поглотительная способность 40—45

 кислотность и буферная способность 45—47

 содержание подвижного фосфора и обменного калия 147, 148

Почвенные минералы 36, 37, 83, 93 Почвенный воздух 34

Почвенный раствор 28, 34, 35

Правила смешивания удобрений 102, 103

Прибавка урожайности сельскохозяйственных культур от удобрений 10, 11, 54, 62, 104, 106, 123, 133, 164 Признаки голодания растений

— азотного 69

— фосфорного 83

— калийного 92 микроэлементного 104, 106—108

Припосевное, припосадочное удобрение 83, 157—159

Производство и применение удобрений в СССР 9, 10, 64

Протоплазма 25

Птичий помет 126, 127

Растение — химический состав и питание 13

Растения, способные усваивать фосфор из груднорастворимых соединений 90, 170

Расчет доз удобрений 148—155

Расчет количества навоза 113

Реакция почвы 45, 48, 146

Регоградация фосфатов в почве 41—42,

Реутилизация питагельных веществ и растении 31, 68, 83, 91 Рядковое удобрение 87

Caxapa 13, 29, 162, 191, 193

Свободное пространство клетки 24 Севооборот — применение удобрений в севообороте 135, 136, 138

Cepa 15, 20, 21, 61, 62

Сидераты 132

Симпласт 26

Синтетическая деятельность корней 23, 26

Система удобрения 135—193

Склады минеральных удобрений 10, 222—224

Скорость и механизмы поступления питательных веществ в растения 20— 26

Сложно-смешанные удобрения 102, 210

Сложные удобрения 99

— аммофос и диаммофос 100

— нитрофосы и нитрофоска 100, 101

— нитроаммофосы 101

— карбоаммофосы 101

 — полифосфаты аммония жидкие 101

Слюды 36, 93

Смешанные удобрения 102—104 Содержание элементов питания в растениях 15, 17

— — в почвах 36, 39

Состав поглощенных катионов в почвах 43—45

Сократительные белки 25

Сочетание применения навоза и минеральных удобрений 140, 141

Степень насыщенности почв основаниями 46, 47

Сроки и способы внесения удобрений 155—160

Суперфосфат 85

Сухое вещество растений 13, 15 Сырой протеин 14, 69, 187

Твердая фаза почвы 35—40 Тонина помола фосфоритной муки 89 Торф 127

 виды и агрохимическая характеристика 127—129

 пспользование в сельском хозяйстве 129—131

Торфяники 131, 177 Транспирация 24

«Треугольник» Прянишникова 4

Углеводы 13, 20, 26, 67, 92 Углекислота 1, 5, 21, 29, 34 Углерод в растениях и почвах 15, 36 Удобрение сельскохозяйственных культур

— озимой пшеницы и ржи 161—164

 яровой пшеницы, ячменя и овса 164—166

кукурузы 167—169

— зернобобовых культур 169—171

— многолетних трав 171—172

— льна-долгунца 172—175

— картофеля 175—178

сахарной свеклы 178—182

хлопчатника 182—185

— лугов и пастбищ 185—193

Удобрения — влияние на урожай 9—12 — на почву 49—52, 59—62, 75, 77, 80, 98, 121, 122

— производство 9, 10

— органические 63— промышленные 63

— местные 63

простые или односторонние 63

комплексные 64, 99—102

— азотные 65—82

— фосфорные 83—90

калийные 91—98

сложные 63, 99

сложно-смещанные 102

смешанные 102—104
 Ультрамикроэлементы 15

Учет эффективности удобрений в хозяйстве 203, 212

Физиологическая реакция солей 27, 80 Физиологическая роль элементов питания растений 16

Фиксация азота атмосферы 72 Формы удобрений азотных 73

— фосфорных 84

— — калийных 96

— — комплексных 99—101

Фосфор, фосфаты — значение для растений 82

 — содержание и формы в почвах 83, 144, 148

 — химическое поглощение в почвах 83, 86, 156

 — усвояемые растениями формы 84, 87, 144

Фосфорилирование 20, 68, 82

Фосфорные удобрения, содержащие водорастворимые фосфаты (суперфосфат простой, двойной, аммонизированный) 85—87

 — — лимоннорастворимые фосфаты (преципитат, томасшлак, термофосфаты, обесфторенные фосфаты) 87—89

Фосфоритная мука 89—91 Фотосинтез 5, 20 Фульвокислоты 38

Характеристика почвы агрохимическая 146

Химизация земледелия 5, 9, 12 Химическая мелиорация почв 48—62 Химический состав растений 13—16

Химический состав	тверд	ой	фазы
почвы 35, 36 Хлор 15, 77, 95, 96			
Хранение и внесение 120	навоза	115-	119,

— — минеральных удо**б**рений 155— 160

Центральный институт агрохимического обслуживания сельского хозяйства (ЦИНАО) 8, 148, 150, 213, 219, 220

Цинк 15 Цитоплазма 22, 24, 26 Цитоплазматическая мем**б**рана 25

Шлаки доменные и мартеновские 54, 81, 88

Экономическая оценка применения удобрений 12, 58, 196—210

- Экономическая эффективность удобрений народнохозяйственная 206—210
- — отраслевая 206, 208
- — хозяйственная 203—206
- — в севообороте 201—203 — — под отдельные культуры
- — под отдельные культуры 196—201
- Элементы питания растений физиологическая роль 50, 51, 61, 65, 82, 91
- — содержание в растениях 50, 51, 61, 69, 83, 93
- поглощения растениями 20
- — содержание в почвах и доступность растениям 39, 40, 51, 62, 69, 83, 93
- Эффективность удобрений в зависимости от климатических и почвенных условий 136—138

Введение	3
Задачи и методы агрохимии	3
Краткая история развития агрохимии	5
Значение удобрений п применение их в сельском хозяйстве СССР	9
Глава 1. Основы питания растений	13
Химический состав растений	13
Поглощение питательных веществ растеннями	20
Влияние условий внешней среды на поглощение питательных веществ ра-	
стением; роль микроорганизмов	28
Отношение растепий к условиям питания в разные периоды роста	30
Глава 2. Агрохимические свойства почвы в связи с питанием растений	
и применением удобрений	34
Состав почвы	34
Поглотительная способность почвы	40
Кислотность и буферная способность почвы	45
Глава 3. Химическая мелиорация почв	48
Известкование кислых почв	48
Действие извести па почву и урожайность	48 49
Действие извести па почву и урожайность	49
Действие извести па почву и урожайность	49 53 54 57
Действие извести па почву и урожайность	49 53 54 57 58
Действие извести па почву и урожайность	49 53 54 57
Действие извести па почву и урожайность	49 53 54 57 58
Действие извести па почву и урожайность	49 53 54 57 58 59
Действие извести па почву и урожайность Известковые удобрения Определение потребности почв в известковании и дозы извести Сроки и способы внесения извести Экономическая эффективность известкования Гипсование солонцов Глава 4. Минеральные удобрения	49 53 54 57 58 59
Действие извести па почву и урожайность Известковые удобрения Определение потребности почв в известковании и дозы извести Сроки и способы внесения извести Экономическая эффективность известкования Гипсование солонцов Глава 4. Минеральные удобрения Азотные удобрения	49 53 54 57 58 59 63
Действие извести па почву и урожайность	49 53 54 57 58 59 63 65 65
Действие извести па почву и урожайность Известковые удобрения Определение потребности ночв в известковании и дозы извести Сроки и способы внесения извести Экономическая эффективность известкования Гипсование солонцов Глава 4. Минеральные удобрения Азотные удобрения Значение азота для растений; содержание и превращение его в почве Нитратные удобрения Аммонийные и аммиачные удобрения Мочевина	49 53 54 57 58 59 63 65 65 74
Действие извести па почву и урожайность Известковые удобрения Определение потребности ночв в известковании и дозы извести Сроки и способы внесения извести Экономическая эффективность известкования Гипсование солонцов Глава 4. Минеральные удобрения Азотные удобрения Значение азота для растений; содержание и превращение его в почве Нитратные удобрения Аммонийные и аммиачные удобрения	49 53 54 57 58 59 63 65 65 74 75

Значение фосфора для растений и содержание его в почве	82
Сущерфосфат	85
Преципитат, томасшлак, термофосфаты, обесфторенный фосфат	87
Фосфоритная мука	89
Калийные удобрения	91
Значение калия для растений и содержание его в почве	91
Сырые калийные соли и отходы промышленности	95
Промышленные калийные удобрения	96
Зола — калийно-фосфатно-известковое местное удобрение	98
Комплексные удобрения	99
Смещанные удобрепия	102
Микроудобрения	104
тикроудоороши	104
Глава 5. Органические удобрения	110
Навоз	110
Состав навоза	111
Хранение навоза	
Хранение жидкого навоза	120
Действие навоза на почву и растения	121
Эффективность навоза и особенности его применения в различных	
почвенно-климатических условиях	122
Применение жидкого навоза	124
Навозная жижа	125
Птичий помет	
Торф	120
Виды торфа и их агрохимическая характеристика	127
Использование торфа в сельском хозяйстве	127
	131
Применение удобрений па осущенных торфяниках	131
Зеленое удобрение	132
Глава 6. Система удобрения	135
Основные принципы построения системы удобрения	136
Климатические и почвенные условия	136
Особенности питания отдельных культур и характер севооборота	138
Сочетание применения навоза и минеральных удобрений	140
Установление доз минеральных удобрений	141
Свойства удобрений, сроки н способы их внесеныя	155
Особенности удобрения важнейших сельскохозяйственных культур и раз-	
мещение удобрений в севообороте	161
Удобрение озимой ппиеницы и озимой ржи	161
Удобрение яровой пшеницы, ячменя и овса	164
Удобрение кукурузы	167
Удобрение зернобобовых культур	169
Удобрение многолетиих трав	171
Удобрение льна-долгунца	172
Удобрение картофеля	175
Удобрение сахарной свеклы	178
э доорение сахариом свеклы	110

Удобрение хлопчатника	
Удобрение лугов и пастбищ	185
Глава 7. Экономика и организация применения удобрений	194
Показатели экономической эффективности применения удобрений	194
Экопомическая оценка примецепия удобрений в хозяйстве	196
Народнохозяйственная и отраслевая экономическая эффективность удоб-	
рений	206
Агрохимическая служба	210
Система агрохимического обслуживания сельского хозяйства	214
Планирование применения удобрений	218
Организация рабочих процессов	220
Yказатель литературы	231
Предметный указатель	232

Петр Михайлович Смирнов, Эрнст Аркадьевич Муравин

«АГРОХИМИЯ»

Редактор W. Γ . Чельшкин. Художественный редактор ϑ . Π . ϑ убрилина. Технические редакторы ϑ . M. Π уеева, Π . A. Π иконова. Корректор ϑ . W. Hу ϑ рявцева.

ИБ № 756

Сдано в набор 26/X 1976 г. Подписано в печати 28/1 1977 г. Формат 60×90 1 /1. Бумага тип. N 2. Усл.-цеч. л. 15. Уч.-изд. л. 16.84. Над. N 35. Тираж 42 000 экв. Заказ N 883. Пена 95 коп.

Ордена Трудового Красного Знамени издательство «Колос», 103716, ГСП, Москва, К-31, ул. Дзержинского, д. 1/19 Ордена Октябрьской Революции и ордена Трудового Красного Знамени Первая Образдовая тилография имени А. А. Жданова Союзполиграфирома при Государственном комитете Совета Министров СССР по делам издательств, полиграфии и книжной торговли. Москва, М-54, Валовая, 28